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ABSTRACT
Microcontroller units (MCUs) are compact computers tailored for
embedded and Internet-of-Things (IoT) applications. MCU-based de-
vices primarily run software systems coded in low-level languages
such as C, making them susceptible to memory corruption attacks
like stack-based buffer overflows. Stack canaries are a low-overhead
buffer overflow detection mechanism that offers a certain level of
protection and is frequently used in microprocessor systems in both
the kernel and application layers. However, their effectiveness and
overhead on microcontroller systems have not been extensively
studied. As a result, the community naively assumes that the stack
canary mechanism on microcontrollers provides the same level of
security as it does on microprocessor systems.

In this paper, we present a study that centers on the implemen-
tation and utilization of stack canaries in microcontroller systems.
More specifically, we delve into the support for stack canaries across
libraries, compilers, and system layers. Our findings suggest that the
implementations of stack canaries on microcontroller systems are
generally less secure than their counterparts on microprocessors.
Additionally, we conducted measurements to assess the overhead
of stack canaries within Zephyr, a popular real-time operating sys-
tem for microcontrollers. We aim for this paper to illustrate the
limitations of stack canaries on microcontrollers and advocate for
the exploration of alternative solutions.
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1 INTRODUCTION
Microcontroller units (MCUs), such as ArmCortex-M [3], find exten-
sive use in resource-constrained devices, including applications in
smart home gadgets, drones, and wearables. In the fourth quarter of
2020 alone, Arm reported that its partners had collectively shipped
4.4 billion Cortex-M MCUs [26]. These MCUs typically operate
using either bare-metal software or real-time operating systems
(RTOSs), especially for specific tasks that require a deterministic re-
sponse under constraints of memory, power consumption, and cost.
Microcontroller systems predominantly use low-level programming
languages, such as C. However, the use of such languages brings
along inherent challenges, particularly concerning memory corrup-
tion issues. These issues give rise to vulnerabilities, notably buffer
overflows, which have the potential to compromise system security
by allowing attackers to fully control the system.

While many techniques for enhancing memory safety exist, they
often come with high performance overheads [44]. One notable
exception is stack canaries [32], a low-overhead solution for mitigat-
ing stack-based buffer overflow attacks. Stack canaries can detect
unauthorized overwrites to critical stack data, such as return ad-
dresses and frame pointers, offering a balance between security
and performance. First introduced in 1998 through StackGuard [32],
stack canaries are widely supported by compilers and have been
incorporated into microprocessor systems, such as in x86/x64 and
Arm Cortex-A based systems. Over the years, various research has
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been introduced to bolster the security of stack canaries, includ-
ing defenses against brute-force attacks [41], hardware-assisted
dynamic canary generation [40], and fine-grained stack canaries at
the per-system call level in the Linux kernel [43]. However, these
security mechanisms are primarily designed for microprocessor
systems, and the effectiveness of stack canaries on microcontroller
systems has not been thoroughly studied.

In this paper, we undertake an analysis of stack canaries in micro-
controller system implementations and their practical usage. Using
a C standard library [13], GCC [27], and Linux distributions [14] on
x86/x64 as the baseline for comparison, our analysis encompasses
various microcontroller platforms, including libraries, compilers,
and non-Linux RTOSs. Our study delves into several aspects, in-
cluding the extent of support for stack canaries in microcontroller
systems, the intricacies of their implementation, and an assessment
of their performance and efficiency.

Our first finding is that only a few microcontroller systems have
integrated with stack canaries. This can be attributed to three main
reasons. First, stack canaries are not enabled by default for compil-
ers targeting MCU programs. Instead, developers must take explicit
steps to activate this security feature. Secondly, the inclusion of
stack canaries primarily hinges on compiler instrumentation. How-
ever, it is important to highlight that the responsibility for initial-
izing the canary value lies with the system itself. Unfortunately,
this crucial aspect is inadequately supported by many bare-metal
systems and RTOSs. Finally, the use of stack canaries in microcon-
troller programs results in significantly higher overhead compared
to their microprocessor program counterparts. This is primarily
due to the compact nature of microcontroller programs.

Our second finding underscores that, despite the support for
stack canaries in some systems, several limitations persist. A preva-
lent issue revolves around the prolonged reuse of a single canary
value, a practice commonly configured either during compilation
or at system boot time. This persistence of canary values is attrib-
uted to two key challenges in MCU environments: (1) timing for
canary updates. MCU systems often lack a clear and opportune
time point for enforcing the introduction of new canary values,
contributing to the extended reuse of existing values; (2) limited
random number generation. MCUs face inherent limitations in gener-
ating genuinely random numbers required for canary initialization.
This sharing of canary values presents a significant security risk,
especially considering that most microcontroller systems do not
implement mechanisms like privilege isolation and memory access
control [49].

The remainder of the paper is organized as follows. In §2, we
present an overview of the stack canaries mechanism. We discuss
compiler instrumentation and canary mismatch handling in §3
and system support for canary generation in §4. In §5, we present
the security analysis of stack canaries on microcontroller systems,
followed by a discussion in §6.

2 OVERVIEW OF STACK CANARY
Stack canaries are values that are inserted into a function’s stack
frame, typically placed before essential data, such as the frame
pointer and return address. As illustrated in Figure 1, we divide the
stack canary mechanism into three phases in chronological order.

 Linux system

Mismatch handling
Stack canary 

value generation

Kernel canary 0

App 1 canary 1
App 2 canary 2

 Microcontroller systems

Kernel

Task 1 canary
Task 2

int func()

{

    char buf[6];

…

    return 0;

}

Prologue 

instrumentation

Epilogue 

instrumentation

__stack_chk_fail()

{

    …
}

Runtime checking

Kernel memory

App 1 memory
App 2 memory

Global memory
Privilege Isolation

Figure 1: Three Phases of the Stack Canary Mechanism

In the first stage of stack canary value generation, canary val-
ues are generated and made available to functions that require
them at the variable __stack_chk_guard. For applications com-
piled against the GNU C Library (glibc), this variable is defined
within the C library. However, for programs like the kernel, not
compiled against glibc, it is the program’s responsibility to define
this variable. The randomness and security of canary values are
critical to their effectiveness, as only random and unknown val-
ues can thwart attackers’ guessing attempts. We will discuss how
different systems generate stack canary values in §4.

In the second stage of runtime checking, a canary-protected func-
tion fetches the value from the variable __stack_chk_guard and
places it onto its stack frame in its prologue. Prior to the function’s
return, during its epilogue, the program checks if this canary value
remains intact. If altered, it signifies a buffer overflow attempt. The
rationale behind this is that sequential buffer overflows operate
by overwriting memory from lower to higher memory addresses.
Consequently, to gain control by tampering with the return pointer
or frame pointer, it is imperative to also overwrite the canary value.
Since the stack canary is designed to be a transparent security fea-
ture for software developers, the operations of fetching the canary
and comparing it are actually performed by instructions that are
instrumented by compilers. The instrumented instructions used by
different compilers are similar in this step, as we will discuss in §3.

If an overwriting of the canary value is detected, the third phase
of mismatch handling occurs. This is also accomplished through in-
strumented code that calls stack check failure functions. Depending
on the nature of the protected functions, e.g., application function
or kernel function, the mismatch handling will vary, as we will
discuss in §3.

3 COMPILER INSTRUMENTATION AND
CANARY MISMATCH HANDLING

In this section, we discuss stack canaries support from compilers
and libraries.

3.1 Compiler Instrumentation and Options
To safeguard a function’s stack frame with canaries, the compiler
instruments instructions into both the prologue and epilogue of
the function. In the prologue, these instructions serve two primary
purposes: (P1) fetching the canary value from a specified source
and (P2) placing this canary value onto the stack. Meanwhile, in
the epilogue, the instrumentation performs the following actions:
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(a) Instrumentation Locations

int func()

{

    char buf[6];

…

    return 0;

}

Prologue 

instrumentation

Epilogue 

instrumentation

(i) gcc-m32 / Firmware

sub  sp, #0x10

add  r7, sp, #0

ldr  r3, [pc, #0x2c] 

ldr  r3, [r3]

str  r3, [r7, #0xc] 

ldr  r2, [pc, #0x18]    

ldr  r1, [r2]

ldr  r2, [r7, #0xc]

eors r1, r2

mov  r2, #0

beq  #0x81c4

bl   #__stack_chk_fail

sub  sp, #0x10

movw r0, #0x20

movt r0, #0x3800

ldr  r0, [r0] 

str  r0, [sp, #0xc] 

movw r0, #0x20

movt r0, #0x3800

ldr  r0, [r0] 

ldr  r1, [sp, #0xc] 

cmp  r0, r1

bne  #0x100036d4

…
bl   #__stack_chk_fail

(j) clang-m32 / Firmware

Instrumented code for prologue Instrumented code for epilogue

(c) gcc-x64 / Application

mov  rax, qword [fs:0x28]

mov  qword [rbp-0x8], rax

mov  rdx, qword [rbp-0x8]

sub  rdx, qword [fs:0x28]

je   0x11b8

call __stack_chk_fail

(g) gcc-a64 / Application

stp  x29, x30,[sp, #-0x20]!

mov  x29, sp

adrp x0, 0x10000

ldr  x0, [x0, #0xfe0]

ldr  x1, [x0]

str  x1, [sp, #0x18]

adrp x0, 0x10000

ldr  x0, [x0, #0xfe0] 

ldr  x3, [sp, #0x18]

ldr  x2, [x0] 

subs x3, x3, x2

mov  x2, #0

b.eq 0x864

bl   __stack_chk_fail

(h) gcc-a64 / Kernel

stp x29, x30, [sp, #-32]!

mrs x4, sp_el0

mov x29, sp

ldr x5, [x4, #1144]

str x5, [sp, #24]

mrs x0, sp_el0

ldr x2, [sp, #24]

ldr x1, [x0, #1144]

subs x2, x2, x1

mov x1, #0x0

b.ne 0xffff8000800b306c

… 

bl __stack_chk_fail

(f) clang-x64 / Application

mov  rax, qword [fs:0x28]

mov  qword [rbp-0x8], rax

mov  rax, qword [fs:0x28]

mov  rcx, qword [rbp-0x8]

cmp  rax, rcx

jne  0x119e

…
call    __stack_chk_fail

(d) gcc-x64 / Kernel

mov  rax, gs:[0x28]

mov  [rbp-0x8], rax

mov  rax, [rbp-0x8]

sub  rax, gs:[0x28]

jne  0xffffffff81122b03

…
call __stack_chk_fail

(b) gcc-x86 / Application

mov  edx, dword [gs:0x14]

mov  dword [ebp-0xc], edx

mov  edx, dword [ebp-0xc]

sub  edx, dword [gs:0x14]

je   0x1200

call __stack_chk_fail_local

mov  eax, dword [gs:0x14]

mov  dword [ebp-0x8], eax

mov  eax, dword [gs:0x14]

mov  ecx, dword [ebp-0x8]

cmp  eax, ecx

jne  0x1204

… 

call __stack_chk_fail

(e) clang-x86 / Application

Instrumented code for canary value fetching

PC-relative:  0x1a8bc

Figure 2: Examples to showcase instrumented stack canary code across different architectures and compilers.

(E1) retrieves the canary value from the designated source again,
(E2) compares it with the value residing on the stack and triggers
an error handling function if the values do not match.

Figure 2 shows examples of instrumented instructions by differ-
ent compilers for different targets and architectures. We evaluated
the following compilers, including GNU GCC for x86 (gcc-x86),
x64 (gcc-x64), Cortex-A (gcc-a64), and Cortex-M (gcc-m32), as well
as Clang for Cortex-A (clang-a64) and Cortex-M (clang-m32). Our
evaluation encompasses multiple targets and platforms, namely,
userland applications on Linux, the Linux kernel, and firmware for
Cortex-M devices.

As Figure 2 (b)(c)(e)(f) show, when compiling a userland appli-
cation for Linux on x86/x64, the instrumented instructions fetch
the canary value from [gs:0x14] or [fs:0x28] as gs register
or the fs register has the address of the userland thread local
storage (TLS). Before the function returns, the instrumented in-
structions fetch the canary value again from TLS and compare it
with the one stored on the stack. If it is a match, the function re-
turns normally. Otherwise, a call to __stack_chk_fail_local()
or __stack_chk_fail() is triggered (the distinction will be dis-
cussed in §3.2). When compiling the Linux kernel on x64, as illus-
trated in Figure 2 (d), the instrumented instructions retrieve the
canary value from [gs:0x28], as gs in the Linux kernel mode has
the address of the fixed_percpu_data structure, which we will
discuss in Section 4.1.

When compiling userland applications and the kernel for the
Arm Cortex-A 64-bit architecture, Figure 2 (g)(h) indicate differ-
ences when fetching the canary value. For userland applications,
the instrumented instructions first calculate the address of a 4KB
memory region close to the current PC and write this address to the

x0 register. Next, these instructions retrieve the canary value from
an offset (0xfe0 in this example) of this address and store it on the
stack. In the kernel, the instrumented instructions first fetch the
value of the sp_el0 register, which points to the currently execut-
ing userland process’s task_struct structure. The canary value
is then obtained from an offset (#1144 in this example) of this ad-
dress, which points to the stack_canary field of the task_struct
structure.

Figure 2 (d)(h) show the architecture-specific stack canary de-
signs of the Linux kernel. Specifically, for x86/x64, the Linux kernel
uses a single global canary variable, which is applicable to kernel
stacks across all processes. An offset of #28 in this example from
the kernel segment base stores the canary value. In contrast, the
Cortex-A Linux kernel employs a per-task canary approach, where
each kernel task maintains its own unique stack canary value in its
task_struct structure.

When compiling firmware for Cortex-M, Figure 2 (i) demon-
strates that the instrumented instructions first employ PC-relative
addressing [pc, #0x18] to fetch the address of the canary value
into r2. All of the functions use the same canary address. On the
other hand, Figure 2 (j) reveals that clang-m32 instruments instruc-
tions to obtain the canary value directly from a memory location,
specifically #0x38000020 in this instance. All functions fetch the
canary value from the same memory location.

Moreover, both GCC and Clang provide three compilation op-
tions that determine which functions to instrument. The first, -
fstack-protector, activates buffer-overflow checks for functions con-
taining vulnerable objects, such as local character arrays. The sec-
ond, -fstack-protector-strong, offers protection for functions with
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1 void
2 __attribute__ ((noreturn))
3 __stack_chk_fail (void)
4 {
5 __fortify_fail ("stack smashing detected");
6 }
7
8 strong_alias (__stack_chk_fail, __stack_chk_fail_local)

(a) Code snippet from stack_chk_fail.c file

1 extern void __stack_chk_fail (void) __attribute__ ((noreturn));
2 /* On some architectures, this helps needless PIC pointer setup
3 that would be needed just for the __stack_chk_fail call. */
4 void __attribute__ ((noreturn)) attribute_hidden
5 __stack_chk_fail_local (void)
6 {
7 __stack_chk_fail ();
8 }

(b) Code snippet from stack_chk_fail_local.c file

Listing 1: Code snippets for canary mismatch handling on glibc-2.38.

1 __visible noinstr void __stack_chk_fail(void)
2 {
3 instrumentation_begin();
4 panic("stack-protector: Kernel stack is

corrupted in: %pB",↩→
5 __builtin_return_address(0));
6 instrumentation_end();
7 }

(a) Linux kernel

1 uintptr_t __stack_chk_guard = (uintptr_t)

STACK_CHK_GUARD;↩→
2
3 __attribute__((noreturn)) void __stack_chk_fail(void)
4 {
5 core_panic(PANIC_SSP, "ssp: stack smashing

detected");↩→
6 }

(b) RIOT-OS

1 void _StackCheckHandler(void)
2 {
3 z_except_reason(K_ERR_STACK_CHK_FAIL);
4 CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
5 }
6
7 FUNC_ALIAS(_StackCheckHandler,

__stack_chk_fail, void);↩→

(c) Zephyr

Listing 2: Code snippets for canary mismatch handling on Linux kernel and microcontroller systems.

various array types (like integer arrays), functions referencing lo-
cal variables, memory allocation functions such as alloca(), and
functions possessing buffers larger than 8 bytes. The third, -fstack-
protector-all, extends the protection to all functions, regardless of
their contents. The -fstack-protector-strong option has been the
default for compiling userland applications in major Linux distri-
butions, such as Ubuntu and their derivatives.

3.2 Canary Mismatch Handling
When a canary mismatch is detected, a call to either function
__stack_chk_fail() or function __stack_chk_fail_local() is
made. The implementations of these functions vary depending
on where they are implemented. As illustrated in Listing 1 (a)(b),
in the GNUC Library (glibc), this function calls __fortify_fail(),
which in turn calls glibc abort. The abort function raises a SIGABRT
signal on Linux. Listing 2 (a) shows the implementation of function
__stack_chk_fail() in the Linux kernel, which triggers a kernel
panic and prints out the symbolic name of the function from which
__stack_chk_fail()was called (line 4). The instrumentation_*
functions on line 3 and line 6 are part of the Linux kernel’s built-in
infrastructure for function tracing. Similarly, the implementations
of __stack_chk_fail() on microcontroller systems typically log
the error and halt the kernel. Listing 2 (b) shows that in RIOT-OS if
a canary value mismatch occurs, it immediately sends the kernel
into a panic [25]. Listing 2 (c) demonstrates that in Zephyr, if the
canary value check fails, the kernel triggers a fatal stack overflow
error, thereby halting the system [46].

4 SYSTEM SUPPORT FOR STACK CANARY
GENERATION

In this section, we first present glibc and the Linux kernel as state-
of-the-art implementations of stack canary value generation. Then,
we discuss how stack canary values are generated in microcon-
troller systems. We also assess a system’s support for stack canaries
from several aspects. The findings are summarized in Table 1. Ad-
ditionally, we select Zephyr, an RTOS for MCUs, as a case study to

evaluate the performance of stack canaries within microcontroller
systems. In particular, we assess the security of implemented stack
canary mechanisms from the following aspects:

Canary Randomness: A canary value should be random and
not predictable.

Canary Lifespan: Security is enhanced when the lifespan of a
canary value is short and not reused.

Canary Size:A larger canary size increases the range of possible
values; hence, the canary will be harder to be brute-forced.

Initialization Time:When a stack canary is initialized impacts
its effectiveness in securing the system, exposure windows, and
resilience to replay and brute-force attacks.

Enabled by Default: Enabling stack canaries by default mini-
mizes configuration errors and lowers the chance of introducing
vulnerabilities for developers who are not fully acquainted with a
system’s security suite.

4.1 The GNU C Library (glibc) and Linux Kernel
Implementations

4.1.1 Linux Userland Application. When a new userland applica-
tion is launched on a Linux system, e.g., via the execve system call,
the kernel generates random data using the get_random_bytes()
function. Then, the random data is passed to the userland applica-
tion through the auxiliary vector structure. During the application’s
initialization in the userland, glibc fetches the random data passed
by the kernel and invokes the _dl_setup_stack_chk_guard()
function to produce the canary value. Note that child processes
created by the fork system call will have the same canary value as
their parent.

4.1.2 Linux Kernel. To support stack canary in the kernel, the
compiler options STACKPROTECTOR and STACKPROTECTOR_STRONG
must be enabled. On Cortex-A and RISC-V architectures, the ad-
ditional STACKPROTECTOR_PER_TASK option is offered to support
per-task canary values. Listing 3 shows that during the system boot
phase, the Linux kernel invokes the boot_init_stack_canary()
function, which eventually calls get_random_long() to generate
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1 extern unsigned long __stack_chk_guard;
2
3 static __always_inline void boot_init_stack_canary(void)
4 {
5 unsigned long canary = get_random_canary();
6
7 current->stack_canary = canary;
8 #ifndef CONFIG_STACKPROTECTOR_PER_TASK
9 __stack_chk_guard = current->stack_canary;
10 #endif
11 }

(a) Cortex-A

1 static __always_inline void boot_init_stack_canary(void)
2 {
3 unsigned long canary = get_random_canary();
4
5 current->stack_canary = canary;
6 #ifdef CONFIG_X86_64
7 this_cpu_write(fixed_percpu_data.stack_canary, canary);
8 #else
9 this_cpu_write(__stack_chk_guard, canary);
10 #endif
11 }

(b) x86/64

Listing 3: Code snippets for stack canary value generation on Linux kernel.

Table 1: Comparison of stack canary value generation and mismatch handling across systems

Systems that implement canary value generation and/or mismatch handling
Version/
Commit

Size
(byte)

Enabled by
Default? Initialization Time Randomness Storage Mismatch Handling

Linux App. (glibc [13]) v2.38 4 Yes application execution PRNG Thread Local Storage kill the thread
Linux Kernel [14] v6.5.5 4 Yes boot/task creation PRNG task_struct log and panic

LiteOS [15] 2f8fdf9 4 No compile hardcoded/user-defined RNG global log and panic
RIOT-OS [22] 724e6e0 4 No compile CSPRNG global log and panic
Zephyr [45] v3.5.0 4 No boot TRNG/PRNG global log and panic
Nuttx [2] a506f9f - No - - - panic

Systems that do not implement canary value generation or mismatch handling
TizenRT (3.0_GBM) [24], Mynewt (6972a1b) [1], TinyOS (c4fcab7) [29], Azure RTOS (b1b21dd) [5], RT-Thread (b1b21dd) [23],

OpenWrt (12f5372) [20], Contiki-NG (b6e22a2) [10], Mongoose OS (39b05dd) [16], FreeRTOS (4e2a034) [11], TI-RTOS (2.21.xx) [28]
-: not applicable. The systems discussed in this table utilize 32-bit architectures.

a random canary value. The random value is then stored in the
current task_struct structure. If the kernel is compiled with
STACKPROTECTOR_PER_TASK, all tasks will have their own random
canary values in their task_struct structures. Please note that
this per-task canary value is the one the kernel employs when
executing on behalf of the task, distinct from the userland canary
value discussed in the previous subsection. Additionally, as shown
in line 7 of Listing 3 (b), on the x86/64 architecture the canary
value is stored in the fixed_percpu_data. As detailed in §3.1, on
x86/64 compiler-instrumented code access the canary value from
this address (gs:0x28).

4.1.3 Randomness of the Linux Application and Kernel Stack Ca-
nary Values. The randomness of the canary values for both userland
applications and the kernel is derived from the kernel’s entropy
pool, which produces pseudo-random numbers. The pool is periodi-
cally seeded with entropy from various sources, including keyboard
presses, mouse movements, and disk activity. On 32-bit architec-
tures, the canary value will be 4 bytes, while on 64-bit architectures
it will be 8 bytes.

4.2 Microcontroller System Implementations
As shown in Table 1, we studied 14 open-source microcontroller sys-
tems [7, 8]. Among these, three discuss how they generate canary
values, and four implement mismatch handling functions, which
eventually send the system into a panic state. In detail, LiteOS [15]
assigns the canary value as 0x000a0dff for 32-bit architectures
and 0x000a0dff000a0dff for 64-bit architectures. It also provides
a weak function, ArchStackGuardInit(), which developers can

replace to initialize the canary value with their implementation.
RIOT-OS [22] uses a cryptographically secure pseudo-random num-
ber generator (CSPRNG) to ensure a unique 4-byte canary value
for each build. Zephyr [45] generates canary values using a non-
cryptographic random number generator (RNG). This RNG derives
entropy from a physical source (if compatible with the device) or a
system timer clock for pseudo-entropy.

For the ten microcontroller systems that do not implement the
canary value generation or mismatch handling, compiling the sys-
tem results in errors: undefined symbol __stack_chk_guard and
undefined symbol __stach_chk_fail.

4.3 Overhead on Microcontroller Systems: A
Case Study of Zephyr

To evaluate the impact of stack canaries on performance and code
size within microcontroller systems, we conducted tests on Zephyr
using the Nucleo F412ZG board [18]. This board is powered by
an ARM Cortex-M4 core running at 100 MHz with 1MB of flash
memory and 512KB of SRAM.

We evaluated three projects on Zephyr (v3.5.0) [30]: (i) Blinky [9]
implements a single kernel thread that toggles an LED via GPIO API
at a predetermined time interval. We modified the infinite toggling
to occur 100 times in order to measure the time consumption, (ii)
Producer/consumer [21] is a userspace example that implements two
userspace threads and one kernel thread. It simulates a driver and
uses two interconnected userspace tasks: task A fetches and buffers
data from a driver, while task B processes this data in a secure
environment before task A writes the processed output back to the
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Table 2: Performance measurement (%) of Zephyr on three
projects with the optimization level -O3

Benchmark Name Baseline Stack Canary Enabled

Zephy on
Cortex-M

Blinky 961,101,963 0.000075%
Producer/consumer 145,793,296 0.012418%
Multi-threading 265,447,389 0.003991%

Reported
overhead
on x86 [33]

SPECint - 2.8%
SPECCfp - 2.5%
SPEC CPU - 2.7%

-: not applicable. Our evaluation outcomes are influenced not only
by the architecture but also by the experimental benchmarks.

Table 3: Code size overhead of Zephyr on three projects with
the optimization level -O3.

Baseline
(bytes)*

Stack Canary Enabled

overhead* # instrumented
func./all func.*

# instrumented
func. called

by main/... main
Blinky 26,206 18.99% 122/160 (76.25%) 15/34 (44.11%)
Producer
/consumer 86,184 14.95% 314/371 (84.64%) 34/57 (59.65%)

Multi-threading 36,648 15.94% 141/182 (77.47%) 37/61 (60.66%)
*: results for the whole project. Since the scheduler operates com-
monly across all projects, they were not clarified in this table.

driver, (iii) Multi-threading [17] refers to a scheduler example that
utilizes condition variables in a multithreaded application. This
example comprises 20 worker threads and one main thread, all
of which are kernel threads. The main thread and worker thread
switch execution when the worker thread signals the main thread,
which is waiting on the condition variable.

For compilation, we employed the Zephyr-specific GCC cross-
compiler designed specifically for the ARM architecture. We set the
optimization level to -O3 to match the optimization used by [33] for
a reliable comparison with the x86 architecture. To assess perfor-
mance overhead, we monitored CPU cycle usage across the entire
main() function. Furthermore, we statically analyzed the binary
files using Ghidra [12] to understand the instrumentation details
for each function. Zephyr does not enable stack canaries by default.
Therefore, the default-configured Zephyr was used as our baseline.

Table 2 shows that the performance overhead of Zephyr running
on Cortex-M is significantly lower than that of benchmarks run
on x86. Blinky, Producer/Consumer, and Multi-threading recorded
overheads of 0.000075%, 0.012418%, and 0.003991%, respectively. Ta-
ble 3 presents a substantial increase in code size for these projects:
18.99% for Blinky, 14.95% for Producer/Consumer, and 15.94% for
Multi-threading, respectively. This increase is attributed to over
75% of the functions in these projects being instrumented for ca-
nary runtime checks. Our focus was further narrowed to functions
called by main(), aligning with our performance study. Table 3 also
indicates that Producer/Consumer has 59.65% of its functions instru-
mented, which is slightly less than the 60.66% in Multi-threading.
Nevertheless, Producer/Consumer incurs a higher performance over-
head compared to Multi-threading. This is largely due to the more
frequent execution of functions with canary checks during runtime.

5 SECURITY ANALYSIS OF STACK CANARY
ON MICROCONTROLLER SYSTEMS

In this section, we discuss the weaknesses of canary value genera-
tion on microcontroller systems. We also discuss the fundamental
reasons for these weaknesses and emphasize the common chal-
lenges faced by stack canary value generation on MCUs.

5.1 Weaknesses
5.1.1 Weakness 1: A Single Canary Value in the Address Space.
Microcontroller systems use a global canary value for all kernel
and task functions. Therefore, attackers only need to deduce one
value in order to compromise stacks across the system. For MCUs,
the kernel and tasks often reside within the same physical memory
address space. Ensuring proper isolation under such conditions
requires additional measures, often involving the use of MPUs.
However, Zhou et al. [48, 49] have observed that MPUs are not
widely adopted in commercial products and often do not function
as intended due to high overhead and conflicts with the existing
system design.

5.1.2 Weakness 2: No or Weak Randomness. LiteOS relies on de-
velopers to implement an RNG function for randomizing canary
values. In the absence of RNG, it assigns default canary values,
which, if known to attackers, are vulnerable to circumvention. Fur-
thermore, the canary value stays fixed until the system reboots or
recompiles, even in systems equipped with RNG capabilities. The
static nature of the canary makes it susceptible to attackers who
can deploy brute-force tactics, where different values are tried until
they find the right one.

5.1.3 Weakness 3: Lack of Good Entropy for Randomness. Many
MCUs lack good entropy sources, which are essential for random
number generation because of their design priorities. Specifically,
MCUs are built for simplicity, energy efficiency, and affordabil-
ity. Adding reliable entropy sources can increase their complexity,
energy use, and cost. In addition, many microcontroller systems
prioritize predictable, real-time responses, making the introduction
of randomness potentially counterproductive. However, without
a good RNG, the system cannot ensure the randomness of a stack
canary value. For devices without TRNG, Zephyr offers a PRNG
that uses the system timer for entropy. However, since attackers
might manipulate the system’s boot time, controlling the system
timer and potentially retrieving the canary value becomes feasible.

6 DISCUSSIONS
6.1 Reduce Attack Surface
One way to reduce the attack surface of stack canaries is to avoid
storing the reference canary in insecure memory, where it could be
read or overwritten by an attack. Introduced for ARM microcon-
trollers, the Pointer Authentication (PA) mechanism [4, 36] acts as
a countermeasure against memory corruptions. It generates and
verifies the Pointer Authentication Code (PAC) for pointers using
the QARMA block cipher. PCan [40] leverages PA to dynamically
generate canaries while preventing the exposure of referenced ca-
naries in memory. In addition to the PAC, the Physical Unclonable
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Function (PUF) [42] offers another layer of hardware support, pro-
viding a unique root of key that remains concealed from developers.
PUFCanary [34] employs the PUF to randomize canary generation,
thereby eliminating the need to store sensitive canary words in
memory or CPU registers.

6.2 Enlarge Entropy Source Pool
One way to enhance the randomness is to bolster the entropy pool,
which will improve the randomness of the canary value. For MCUs
that lack TRNG, we recommend merging various entropy sources.
The system timer utilized by Zephyr is one potential source of ran-
domness. Additionally, other resources, such as unused SRAM, sen-
sor outputs like temperature monitors, and audio and video streams,
can also contribute to the entropy source. For instance, 𝜇Armor [31]
introduces 𝜇RNG, a CSPRNG design that utilizes SRAM startup
values, a range of oscillators, and analog-to-digital converters as
sources of entropy.

6.3 Use a Memory-safe Language
Memory-safe languages like Rust provide memory safety assur-
ances without compromising performance. Many microcontroller
systems, including Tock OS [39] and Bern RTOS [6], harness the
advantages of Rust to address memory safety concerns in their
development.

6.4 Other Efficient Security Mechanisms
In addition to stack canaries, several other security mechanisms
have garnered extensive research attention. GCC and Clang support
the FORTIFY_SOURCE [19] macro with the glibc to enhance security.
Unlike broader mechanisms like stack canaries, FORTIFY_SOURCE
specifically improves certain C standard library functions, like
strcpy and sprintf, by replacing them with safer versions when
buffer sizes are predictable at compile-time, thereby minimally im-
pacting code size. Additionally, Silhouette [47] and Kage [35] utilize
unprivileged store and load instructions to protect the shadow
stack, enhancing control-flow security in microcontroller systems.
Meanwhile, CRT-C [38] and EC [37] advocate for efficient compart-
mentalization techniques. Such approaches offer a finer security
granularity compared to stack canaries and achieve this with mod-
est performance and code size implications.

7 CONCLUSION
In this paper, we delve into the three phases of the stack canary
mechanism. We conduct an in-depth examination of stack canaries’
implementation in compilers, libraries, and systems. We also use
Zephyr as a case study to explore the overhead on microcontroller
systems. We observed that the generation of canary values in mi-
crocontroller systems not only lacks emphasis but also robustness,
unveiling five distinct weaknesses. Unfortunately, someweaknesses
are inherent and cannot be easily rectified. Ultimately, it appears as
though the stack canary might not be the best fit for microcontroller
systems. This underscores the need to explore alternative security
mechanisms.
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