2023 60th ACM/IEEE Design Automation Conference (DAC) | 979-8-3503-2348-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/DAC56929.2023.10247972

Return-to-Non-Secure Vulnerabilities on ARM Cortex-M
TrustZone: Attack and Defense

Zheyuan Ma'*, Xi Tan¥, Lukasz Ziarek', Ning Zhang*, Hongxin Hu', Ziming Zhao'*
TUniversity at Buffalo *CactiLab *Washington University in St. Louis
{zheyuanm, xitan, lziarek, hongxinh, zimingzh} @buffalo.edu, zhang.ning@wustl.edu

Abstract—ARM Cortex-M is one of the most popular microcontroller
architectures designed for embedded and Internet of Things (IoT)
applications. To facilitate efficient execution, it has some unique hardware
optimization. In particular, Cortex-M TrustZone has a fast state switch
mechanism that allows direct control-flow transfer from the secure state
program to the non-secure state userspace program. In this paper, we
demonstrate how this fast state switch mechanism can be exploited for
arbitrary code execution with escalated privilege in the non-secure state
by introducing a new exploitation technique, namely return-to-non-secure
(ret2ns). We experimentally confirmed the feasibility of four variants of
ret2ns attacks on two Cortex-M hardware systems. To defend against
ret2ns attacks, we design two address sanitizing mechanisms that have
negligible performance overhead.

I. INTRODUCTION

ARM Cortex-M is the dominating 32-bit microcontroller architecture.
In the 4th quarter of 2020 alone, 4.4 billion Cortex-M-based devices
were shipped [1]. In contrast to microprocessors, like Cortex-A
used in smartphones and laptops, Cortex-M does not include a
memory protection unit (MMU) and targets embedded and Internet
of Things (IoT) deployments. Example embedded and IoT products
built on this architecture include (1) consumer devices like Fitbit
Flex and Oculus VR; (2) electronic control units in vehicles; and (3)
data communication subsystems in mobile phones, e.g., Bluetooth
controllers.

ARM TrustZone is a hardware-assisted trusted execution environment
(TEE) that splits system-on-chip resources between two execution
states, non-secure and secure. Software running in the secure state
can access all resources, whereas software in the non-secure state can
only access non-secure resources. First introduced with Cortex-A [2],
TrustZone has been recently extended to Cortex-M, but optimized for
performance. Different from Cortex-A, which indicates the security
state in the secure configuration register, the division of states in
Cortex-M is based on memory regions. When running code in the
secure memory, the processor is in the secure state. Otherwise,
the processor is in the non-secure state. As shown in Figure 1,
state switches on Cortex-A must go through a single entry point —
the privileged secure monitor mode — via the secure monitor call
instruction (smc), whereas state switches in Cortex-M can occur
through function calls and returns, resulting in an unlimited number of
entries between secure and non-secure privilege levels. While faster,
the security implications of this state switch mechanism have not
been thoroughly studied.

The inherent semantic gap between a secure state program and
the non-secure state memory inevitably leads to confused deputy
vulnerabilities [3], [4], where the secure state program can be
tricked or exploited by a non-secure state program into misusing
its authority or ability [5], [6]. Boomerang [7] is a class of such
vulnerabilities discovered on Cortex-A secure state programs, which
allows malicious non-secure userspace applications to read and write
the non-secure kernel memory by misleading the secure state program

Cortex-A Cortex-M
Non-secure State Secure State Non-secure State Secure State
Unprivileged Unprivileged Unprivileged Unprivileged
Level Level Level Level
..) .. F 1. 4 h
Privileged Privileged
Level Level
= A Privileged Privileged
I:l Exception and return |:' Level Level
Secure Monitor Mode

Figure 1: State switches on Cortex-A TrustZone must go through the
privileged secure monitor mode, whereas state switches on Cortex-M
can occur between different secure and non-secure privilege levels.

to do so on its behalf. Boomerang bugs could exist in any TEE
implementation where the secure state program can access non-
secure state memory, including Cortex-M TrustZone. Fortunately,
boomerang does not directly lead to arbitrary code execution with
escalated privilege.

In this paper, we report a new class of confused deputy attacks,
namely return-to-non-secure attacks (ret2ns), that exploit the fast
state switch mechanism of Cortex-M TrustZone. More dangerous
than boomerang, ret2ns can lead to arbitrary code execution with
escalated privilege in the non-secure state. Ret2ns is a new type
of return-to-user (ret2usr) attacks [8], [9] that redirect compromised
secure state pointers to code residing in non-secure state userspace.
The wide state transition surface on Cortex-M also makes the
exploitation of ret2ns vulnerabilities easier than exploiting ret2usr on
x86 or boomerang on Cortex-A. Ret2ns attacks affect all Cortex-M
processors with TrustZone. We also argue ret2ns vulnerabilities are
likely to exist in any TEE implementations that allow direct control-
flow transfers from secure state to non-secure userspace programs
but keep executing at the privileged level.

Similar to ret2usr, which can be defeated by preventing arbitrary
control-flow transfers and dereferences from kernel to userspace [8],
ret2ns can be thwarted by preventing control-flow transfers from non-
secure state to secure state userspace by using privileged execute-
never (PXN) feature. However, PXN is not available on most Cortex-
M processors. Only the planned Cortex-M55 and M85 will support
this feature [10]. To defeat ret2ns attacks on Cortex-M microcon-
trollers without PXN, we propose two address sanitizing mechanisms
with negligible performance overhead. The first one utilizes the
memory protection unit (MPU) in the non-secure state to add proper
checks before the state transition happens from the secure state. The
checks will get the current non-secure privilege level and examine the
MPU setting of the destination address to determine whether privilege
escalation is attempted. To further reduce the performance overhead,
the second approach applies address masking but requires the non-
secure userspace program and kernel space program to be placed in

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 20,2023 at 04:25:15 UTC from IEEE Xplore. Restrictions apply.

different and known ranges.

The contributions of this paper are as follows:

o We analyze and report a security design weakness in the fast
state switch mechanism of Cortex-M TrustZone by introducing
the concept of ret2ns attacks;

o We present a detailed methodology for four variants of ret2ns
attacks and experimentally evaluate the effectiveness of them on
Cortex-M23 and M33 systems;

« We present two address sanitizing mechanisms to mitigate ret2ns
attacks with negligible runtime overhead.

« We open-source our project', which includes vulnerable code
examples, proof-of-concept exploits, and defense instrumenta-
tion.

II. BACKGROUND AND RELATED WORK
A. Cortex-M and TrustZone

All Cortex-M processors with the TrustZone extension have thread
and handler execution modes [11]. They also have privileged (kernel
space) and unprivileged (userspace) levels. The current mode and
privilege level are determined by the combination of the interrupt
program status register (IPSR) and the CONTROL register. IPSR
indicates the exception number and handler mode if not 0. If
IPSR is 0, the processor is in the thread mode, and the nPRIV
bit of CONTROL determines whether the state is unprivileged or
not. To switch from unprivileged to privileged, software makes a
supervisor call (SVC) with the svc instruction. When a higher
priority interrupt or exception occurs, the processor automatically
pushes eight registers, including program status register (xPSR),
program counter (PC), and link register (LR), to the current stack.
Then, the processor generates a special exception return value named
EXC_RETURN (OXFFFFFFxx), stores it in LR, and executes the
interrupt service routine (ISR), e.g., SVC handler. When an ISR
exits and EXC_RETURN is copied to the PC, the processor will
automatically perform unstacking, which pops the eight registers off
the stack.

TrustZone adds another orthogonal partitioning of states. Different
from Cortex-A, the division of secure and non-secure in Cortex-
M is memory-map-based, and transitions between states take place
automatically. The nPRIV bit of CONTROL is banked between two
states. In the rest of the paper, we use CONTROL_NS.nPRIV to
refer to the non-secure state copy and CONTROL_S.nPRIV for
the secure state copy. The IPSR is not banked. With TrustZone,
a memory region can be secure, non-secure callable (NSC), or non-
secure. The NSC represents the entry point of the transition from
the non-secure state to the secure state, which must start with an
sg (secure gateway) instruction. The interstate branch instructions
blxns (indirect call) and bxns (indirect jump) are used to switch
from secure to non-secure state. When calling a non-secure function,
the BLXNS instruction pushes the return program status register
(RETPSR) and the return address onto the secure stack. The link
register LR will also be updated to FNC_RETURN (OXFEFFFFFF).
‘When a non-secure function returns, FNC_RETURN is loaded into PC,
which triggers the processor to unstack the RETP SR, check the IPSR,
and clear interruptions, then unstack the real return address from the
secure stack. The state switching mechanism for the bxns instruction
is more straightforward. If the target address is not FNC_RETURN or

Ihttps://github.com/CactiLab/ret2ns-Cortex-M-TrustZone

EXC_RETURN and the bit 0 of the LR register is 0, bxns branches
to non-secure code directly.

The memory protection unit (MPU) is a programmable unit inside
a Cortex-M processor that monitors all memory accesses, including
instruction fetches and data accesses, over software-designated re-
gions. The permission for an MPU region is determined by the access
permission field and the execute-never bit, which determines whether
execution is permitted when read is permitted. The access permission
field has four possible values: (i) read-only by any privilege level;
(i1) read-only by privileged; (iii) read/write by any privilege level;
and (iv) read/write by privileged. In the ARMv8.1-M architecture,
the planned Cortex-M55 and M85 introduce the privileged execute
never attribute (PXN), which allows an MPU region containing
the userspace application or library to be marked as unprivileged-
execution-only. When TrustZone is implemented, MPU is banked
between the two states. The security state can use the test target
alternate domain instruction (tta) to retrieve the access permissions
of a non-secure state address.

B. Ret2usr, Ret2dir, and Boomerang Attacks

Ret2usr, ret2dir, and boomerang are disclosed confused deputy at-
tacks on microprocessors with MMUs, e.g., x86, Cortex-A, and on
modern operating systems, e.g., Linux. Ret2usr attacks [8] exploit
bugs in the kernel space and redirect the data or control flow to
the data or code in user space. Ret2dir [9] introduces a kernel
exploitation technique that utilizes the virtual memory region inside
the kernel space that directly maps part or all physical memory,
which bypasses ret2usr protections. Boomerang [7] attacks work on
Cortex-A TrustZone, in which a user-level non-secure application can
leverage a secure state application to access a portion of memory that
shall not be accessible to it.

To mitigate ret2usr attacks, kGuard [8] instruments run-time control-
flow checks to verify the indirect branch target is always in kernel
space and enforces lightweight address space segregation. To patch
the ret2dir vulnerability, XPFO [9] uses an exclusive ownership
scheme for the Linux kernel that prevents the implicit sharing
of physical memory. To thwart boomerang attacks, a cooperative
approach [7] requires that all of the non-secure memory accesses
from the secure state need to query a non-secure callback function
to verify the access permission of the referenced memory region.

Note that recent efforts on securing cross-state communication on
Cortex-M TrustZone [12], [13] can only guarantee the confiden-
tiality and integrity of the messages sent between the two states
and authenticate the communicating parties. The aforementioned
confused deputy attacks, as well as the proposed ret2ns attacks do
not rely on tampering cross-state messages nor impersonating any
communicating parties; hence, these attacks cannot be defeated by
secure communication mechanisms.

III. THE RET2NS ATTACKS

In this section, we first discuss the threat model and ret2ns attack
overview, which are followed by the detailed methodology and a
walking example of the attacks.

A. System and Threat Model

Our work focuses on Cortex-M microcontrollers with TrustZone
extension. On the hardware front, such systems lack an MMU and
other security features, e.g., PXN. On the non-secure state software
front, we assume these systems either run (1) a real-time operating

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 20,2023 at 04:25:15 UTC from IEEE Xplore. Restrictions apply.

system (RTOS), e.g., FreeRTOS?, with userspace and kernel modules,
where the kernel services execute in the handler mode and are
dispatched in the SVC handler; (2) a security-enhanced bare-metal
system that supports privilege separation. For example, EPOXY [14]
and ACES [15] identify operations requiring privileged execution
in bare-metal systems and modify the systems to only execute
those operations in the privileged thread mode. We do not assume
vulnerabilities in the kernel module of the non-secure state, but we
assume a buggy secure state firmware or library, e.g., ARM TF-
M [16], running in the secure state. Note that ret2ns vulnerabilities
are likely to exist in any TEE implementations that allow direct
control-flow transfers from secure state to non-secure state userspace
programs but keep executing at the privileged level.

We assume a userspace attacker in the non-secure state who seeks to
elevate privileges by exploiting a memory corruption vulnerability in
the secure state. The attacker’s userspace program interacts with the
secure state program by going through proper non-secure state system
calls via the supervisor call instruction (svc). The vulnerability can
be in either userspace or kernel space of the secure state. The attacker
only needs to corrupt a code pointer used by a bxns or blxns
instruction in the secure state program, and we do not assume the
attacker can corrupt any other code pointer, e.g., those used by bx
or blx, in the secure state program. After all, the attacker’s goal is
not to execute arbitrary code in the secure state.

B. Attack Overview

Secure State

Use previous
CONTROL_S.nPRIV

T4
Corrupted Code Pointer

Non-secure State

CONTROL_NS.nPRIV=1 CONTROL_NS.nPRIV=0

Attacker-controlled
Userspace Program

B Secure State
"Nsc | Program

Thread Mode Thread Mode
el bl (P L EEE L e EEELEEEEEEEEEE

' NSC | Secure State
---------------------- Program
Attacker-controlled | (H3 Cm -
“orrupted Code Pointer
Userspace Program |

]
1
I
I
IPSR=11 I
I
I
I

Program

1
1
1
1
1
1
1
Userspace H
1
1
1
1
1

Q
S

IPSR=11 for BXNS return
IPSR=1 for BLXNS call
Handler Mode

IPSR=11

Handler Mode

Figure 2: Overview of ret2ns attacks. A secure state code pointer
used by bxns or blxns is corrupted and redirected to an attacker-
controlled userspace program in the non-secure state. After the state
switch, the attacker-controlled userspace program executes at the
privileged level.

Figure 2 shows how ret2ns attacks work at a high level. Based
on the non-secure execution mode that an attack originates from,
we break ret2ns attacks into two categories: handler-mode-originated
and thread-mode-originated attacks. Attacks in the former category
are more likely to happen in RTOSes, whereas attacks in the latter
category are likely to occur in security-enhanced bare-metal systems
that support privilege separation. Attacks in either category can be
further attributed to an indirect branch case using bxns or an indirect
call case using blxns, resulting in four variants of ret2ns attacks.

In the handler-mode-originated attacks, a userspace program under
the attacker’s control makes a supervisor call (HL), so the processor
enters the handler mode and IPSR is updated to 11 (the interrupt

Zhttps://www.freertos.org

number of SVC). The SVC handler in turn calls a non-secure callable
(NSC) function (@), and the processor switches to the secure
state. Because IPSR is shared between the secure and non-secure
state, the secure state program keeps executing in the handler mode
with privilege. In a legitimate control path, when the secure state
program exits back to the non-secure state using bxns, the control
returns to the SVC handler. However, if the bxns instruction uses a
corrupted code pointer as the destination, the processor can return to
any location, e.g., userspace program (), in the non-secure state
and keep executing it in the handler mode with privilege. Another
attack path exists when a secure state program makes an indirect call
(blxns) with a corrupted code pointer (@). In this case, IPSR
has the value of 1.

In the thread-mode-originated attacks, the attacker-controlled un-
privileged program uses an SVC call to escalate the non-secure
privilege level with CONTROL_NS.nPRIV cleared (@), after
which a privileged program in the thread mode executes (@). The
privileged program in turn calls an NSC function in the secure state
(@). The NSC function will call the secure state program, which
eventually returns the control to the non-secure state (using bxns)
or calls a non-secure callback function (using blxns). When a
memory corruption vulnerability in the secure state program leads
to a corrupted code pointer, the control flow will transfer to an
attacker-controlled program in the non-secure state (), Since the
non-secure state has CONTROL_NS.nPRIV cleared, the attacker-
controlled program will keep executing in the privileged thread mode.

C. Walking Example: the Handler-mode-originated and bxns Case

Due to the page limit, we only demonstrate a detailed attack walk-
through of the handler-mode-originated and bxns case, the source
code and attack steps of which are shown in Listing 1 and Figure 3.
This example represents a secure display function that can be
implemented in any RTOS running in the non-secure state and a
firmware running in the secure state. In this example, the non-secure
state cannot control the LCD display because the LCD peripheral
registers are only memory-mapped to the secure state address space.
Instead, it uses the display service provided by the secure state.

When a non-secure state userspace program wants to print a message
on the LCD, it calls the userspace library function print_LCD(),
which makes an SVC call with number 0 to enter the handler mode,
ie., IPSR=11 ((D) and Listing 1a line 8-9). The physical address
of the user-supplied message is passed to the SVC handler in RO.
The SVC_Handler parses the request and dispatches it to the secure
state by calling the non-secure callable function print_LCD_nsc()
(Listing 1a line 19) defined in the secure state (). Because IPSR is
not banked during the state switch, the secure state keeps executing in
the handler mode with TPSR=11. The NSC function has an attribute
of cmse_nonsecure_entry, so the ARMClang compiler knows to emit
(1) a secure gate and branch instruction for this function in the non-
secure callable memory region, and (2) a bxns instruction instead
of the regular bx for the function return.

In 3), print_LCD_nsc() checks whether the LCD is ready by calling
the corresponding driver function (Listing 1b line 8). If the LCD is
ready (@), print_LCD_nsc() concatenates the user message to some
timestamp and system status information and calls the driver function
to print the message. Because print_LCD_nsc() is not a leaf function,
its LR value is spilled to the stack. If the user-supplied message is
long enough to overwrite the local variable buf ((3)), the saved LR
value in the stack frame of print_LCD_nsc() can be corrupted, e.g.,

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 20,2023 at 04:25:15 UTC from IEEE Xplore. Restrictions apply.

/+ Userspace fur

void attacker_controlled();

+ /

/* L on. Ca

space program. #*/

1

2

3

4 y o

5 void print_LCD (char *msg
6

7

8

9

{
register charx r0 __asm("r0") = msg;
__asm volatile("svc #0"

(r0));

wyn
10 }

ler */

12 /*
13 void SVC_Handler (unsigned int xsvc_args)
14 {

Kernel space har

15 uint32_t svc_number = (((char *)svc_args[6])[-2]);
16 switch (svc_number)

17 {

18 case 0:

19 print_LCD_nsc((char %)svc_args[0]); break;

20

21 }

#define MAX LEN 128

int32_t _driver_ LCD_ready();

1

2

3 int32_t _driver_ LCD_print (char «);
4

5 /+ Non-secure cal le function =*/
6 int32_t print_LCD_nsc (char *msg)

— __attribute__ ((cmse_nonsecure_entry));

8 int32_t print_LCD_nsc (char xmsg)

9 |

10 char buf[MAX_LEN] = {0};

12 if

13 {

14 sprintf (buf, "%s %s: %s", _TIME_STAMP,
< _SYSTEM_STATUS, msg); /« E

(_driver_LCD_ready ())

fer overflow

/

16 return _driver_ LCD_print (buf); /* bxns return #*/
17 }

18 else

19 return -1; */

(a) Non-secure state code

(b) Secure state code

Listing 1: Example code snippets for the handler-mode-originated and bxns case

® sprintf return |

{ _driver_LCD_print

BXNS

! i ~ !
User Input | |

print_LCD ' | sprintf F Saved LR ! | SVC_Handler
_____________________ ! | [@ me | print LCD.nse |
i _driver_LCD_ready i
DSVCeall | T® buf[MAX_LEN] |
@ - - i

SVC_Handler |—;—>| print_LCD_nsc | ~ ' |attacker_contr011ed

H e Stack frame of |

...................... H sprintf !

IPSR=11 i IPSR=11 : L -~/ i IPSR=11

Non-secure state

Secure state

Non-secure state

Figure 3: Attack walk-through of the example handler-mode-originated and bxns case.

changed to the address of attacker_controlled() in the non-secure
state. Note that the exploited memory corruption vulnerabilities do
not have to exist in the non-secure callable function, they can also
exist in functions called by the non-secure callable functions. In
other words, any memory corruption vulnerability, e.g., format string,
that can lead to the corruption of the saved LR value on the stack
frame of a non-secure callable function can be exploited. When
print_LCD_nsc() returns to the non-secure state using bxns ((©)),
the processor keeps executing from the corrupted return address, e.g.,
attacker_controlled, in the handler mode.

D. Effectiveness Evaluation

We evaluated the effectiveness of the four variants of ret2ns attacks on
two hardware systems: (1) Microchip SAM L11 evaluation platform
with a Cortex-M23 microcontroller; and (2) ANS505 IoT kit image
for the ARM MPS2+ FPGA prototyping board with a Cortex-M33
microcontroller [17]. On the software front, we changed the example
TrustZone projects that came with Microchip Studio IDE * and Keil
IDE * to inject a memory corruption vulnerability in a non-secure
callable function as shown in Listing 1. The experimental evaluations

3https://www.microchip.com/en-us/development-tool/microchip- studio
“https://www2 keil.com/mdk5/uvision/

confirmed the attacker can escalate privilege and execute arbitrary
code by exploiting the ret2ns vulnerabilities in all four cases and both
hardware systems. Because Cortex-M is still fairly new and there are
few secure state firmware implementations, we haven’t found any
real-world ret2ns vulnerabilities in production systems. Nevertheless,
we have responsibly disclosed ret2ns attacks to ARM.

IV. DEFENDING AGAINST RET2NS ATTACKS

The key to preventing ret2ns attacks is to disallow the execution
of non-secure userspace programs at the privileged level. On the
planned Cortex-M55 and M85 microcontrollers, this can be achieved
with negligible overhead by properly setting up the MPU regions
with PXN. However, there are two limitations of the PXN approach:
(1) Cortex-M23, M33, and M35P microcontrollers that hold a large
market share do not have the PXN feature; (2) only a small number
of MPU regions, e.g., 8 or 16, are supported, so it is not fine-grained
enough for complex RTOSes. To address these issues, we present
two mechanisms, namely (i) MPU-assisted address sanitizer and (ii)
address masking, which can effectively mitigate ret2ns attacks for all
Cortex-M microcontrollers with TrustZone.

We only consider the following two control-flow transfers from the
secure state to the non-secure state illegal: (1) any return or call from

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 20,2023 at 04:25:15 UTC from IEEE Xplore. Restrictions apply.

1 ldr RO, [sp, #12]1 ;
2 mrs R3, IPSR ;
3 cbnz R3, #6 ;
4 mrs R3, CONTROL_NS ;
5 1sls R3, R3, #31 ;
6 bne #28 ;
7 tta RO, RO ;
8 1sls R3, RO, #15 ;
9 bpl #20 ;
10 uxtb RO, RO ;
11 movw R3, #0xED98 ;
12 movt R3, #0xE002 ;
13 str RO, [R3, #0] ;
14 ldr RO, [R3, #4] ;
15 1sls RO, RO, #30 ;
16 beg #2 ;
17 cpsid i ;
18 b ;

Listing 2: MPU-assisted Address Sanitizer

the secure handler mode to a non-secure userspace address, regardless
of the non-secure state privilege level; (2) any return or call from
the secure thread mode to a non-secure userspace address when the
non-secure state is at the privileged level. Other secure to non-secure
userspace address control-flow transfers are legal. For example, a non-
secure userspace program can call an NSC function, and it is legal for
the NSC function to return to a userspace address, as in this case, no
privilege escalation will occur. Our proposed mechanisms instrument
destination address sanitizers at two locations: (1) the epilogues of
all NSC functions, i.e., before their bxns instructions; and (2) before
all of the blxns instructions in the secure state program.

A. MPU-assisted Address Sanitizer

In the MPU-assisted address sanitizing approach, we assume the
non-secure state already adequately implements memory protection
mechanisms by configuring userspace and kernel space memory
regions with the non-secure MPU. Our instrumentation examines the
access permissions of the non-secure destination address by querying
the MPU settings. This approach is not intrusive to the non-secure
state userspace and kernel space program since they stay intact and
do not need to be re-compiled.

Listing 2 shows the example instrumentation before a bxns or
blxns instruction. We assume the destination address of a blxns is
already loaded in RO or the return address for a bxns will be loaded
in RO as shown in line 1. We first check the values of the TIPSR
register and the nPRIV bit of non-secure CONTROL_NS register
(line 2 and 4-5). If IPSR is zero (line 3) or CONTROL_NS.nPRIV
equals one (line 6), the control transfer is legal. Otherwise, we use
the test target alternate domain instruction (tta) to check the MPU
attribute of the destination address and save the result into RO (line
7). From the result, we can acquire (1) whether the destination
address is within a software-defined MPU region rather than the
background region using the MRVALID bit (line 8); and (2) the
corresponding MPU region number using the MREGION field (line
10). If the MPU region number is invalid, it means the destination
address is either in the default kernel space background region or the
EXC_RETURN value from the NSC’s return address, both of which
are legal (line 9). Otherwise, we load the MPU_NS.RNR register
address 0xE002ED98 into R3 (line 11-12), and assign the region
number to the MPU_NS.RNR register (line 13) to retrieve the MPU
attributes on this region. From the MPU attributes (line 14), the
second bit in the MPU_RBAR register represents the unprivileged
read permission for this region (line 15). We check whether this bit
is set, which reflects the unprivileged execution permission on the

1 1ldr R1, [SP, #4] ;
2 mrs R2, IPSR ;
3 cbnz R2, #6 ;
4 mrs R2, control_ns ;
5 1sls R2, R2, #31 ;
6 bne #8 ;
7 cmn R1, #0x100 ;
8 it cc ;
9 movtcc R1, #0x2 ;
10 strcc R1, [SP, #4] ;

Listing 3: Address Masking. Instructions that are marked with (not
for blxns) are not used in masking the blxns destination address.

destination address (line 16). If it is set, a ret2ns attack is detected,
and the execution will be stopped (line 17); otherwise, the destination
is legal, and the execution continues.

B. Address Masking

The MPU-assisted address sanitizer is generic but not optimal in
terms of efficiency. To address this issue, we also present a more
efficient address masking mechanism. In this approach, we assume
the userspace program and kernel space program are placed in
different and known memory regions. The instrumentation simply
performs a bit-wise masking on the destination address after checking
the non-secure privilege level to force the destination address to fall
into the allowed address range.

A valid destination address of a bxns instruction could be
EXC_RETURN (0XFFFFFF), so the address making mechanism
should take care of this case and does not mask an EXC_RETURN
value for bxns. This could happen in the following scenario, which
we found in the code generated by the ARMClang compiler. In
the non-secure handler mode, LR has the value of EXC_RETURN.
The non-secure handler uses the bx instruction to branch to an
NSC function. As a result, LR and the return address of the NSC
are still the value of EXC_RETURN after the state switch. Note
that EXC_RETURN should never be a valid destination address for
blxns.

Listing 3 presents an example address masking instrumentation
for both bxns and blxns cases. Same as in the MPU-assisted
address sanitizer, we first determine the non-secure privilege level
by examining IPSR and CONTROL_NS (line 2-6). If the non-secure
state is at the unprivileged level, the control flow is legitimate.
Otherwise, we further verify if the return address is EXC_RETURN
for the bxns case as aforementioned (line 7). If the return address
is not EXC_RETURN or it is for the blxns case, we perform a
bit-wise masking operation to ensure the resulting address falls into
the designated kernel space region (line 9). In the bxns case, after
sanitizing the return address, we store it back to the stack for the
original epilogue to use (line 10).

C. Defense Evaluation

We evaluated the effectiveness and performance of the proposed
defense mechanisms on the AN505 IoT kit image for the ARM
MPS2+ FPGA prototyping board with a Cortex-M33 microcontroller.
The Cortex-M33 processor was configured to execute at 20MHz.

1) Effectiveness Evaluation: We applied both the MPU-assisted
address sanitizer and the address masking approach to the vulnerable
projects presented in Section III-D. The experiments confirmed that
both defense mechanisms can defeat all four ret2ns attack variants.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 20,2023 at 04:25:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Performance Evaluation Results in CPU cycles. Overhead
shown in ().

T,N Blinky MPU-assisted Addr Sanitizer Address Masking
107,107 | 1,200,503,441 1,200,508,359 (0.0004%) | 1,200,506,190 (0.0002%)
10°,10° 12,503,869 12,508,385 (0.0361%) 12,506,793 (0.0234%)
107,10° 12,473,897 12,474,465 (0.0046%) 12,474,243 (0.0028%)
10°,107 | 1,203,433,289 1,203,892,073 (0.0381%) | 1,203,674,733 (0.0201%)

2) Costs of the Worst-case Address Sanitizing Paths: The proposed
instrumentation in Listing 2 and Listing 3 only cost a small number
of CPU cycles. The worst-case experiments, i.e., all instructions in
the listings are executed, on the aforementioned Cortex-M device
show (1) the MPU-assisted address sanitizer costs 32 CPU cycles for
the bxns case, and 30 cycles for the blxns case; (2) the address
masking mechanism costs 18 CPU cycles for bxns, and 12 CPU
cycles for blxns.

3) Performance Evaluation Setup: Because there are no benchmarks
designed specifically for Cortex-M TrustZone cross-world perfor-
mance evaluation, our evaluations were based on a modified Blinky
application that comes with the Keil IDE. The Blinky application is a
cross-world project with both non-secure and secure state programs,
and it works on a system with 3 LEDs and a UART peripheral. We
enabled the non-secure MPU for all the evaluation experiments.

In the modified Blinky application, the secure and non-secure
programs configure the SysTick timer for its corresponding state,
respectively, to generate a SysTick interrupt every S ms (around
T = S x 20 x 10®> CPU cycles). The secure state program provides
three NSC functions for 1) switching on an LED; 2) switching off
an LED; 3) sending messages to the UART peripheral. All three
NSC functions return with bxns instructions. The non-secure main
program is a loop that calls the three NSC functions to toggle LED-1
and send a message to the UART. There are N nop instructions
before each NSC function call, and each nop instruction consumes
one CPU cycle. The secure SysTick handler calls two non-secure
functions to toggle LED-2 using b1xns instructions. The non-secure
SysTick handler also calls the NSC functions to toggle LED-3.
The cross-state calls in the SysTick handlers represent the routine
two-way communications between the states, whereas the NSC
function calls in the non-secure main loop represent ad hoc service
requests. By configuring 7" and N, we can simulate applications with
different state-crossing frequencies. Higher 7' means less frequent
routine communications between the states, and higher N means less
frequent service requests from the non-secure state to the secure state.

4) Performance Evaluation Results: We chose four pairs of 7" and N
to simulate scenarios with different routine cross-state communication
and service request frequencies. For each pair of T' and N, we
recorded the cost in CPU cycles when the non-secure main loop
executes 10 times. We ran each case five times and computed the
cost on average.

Table I shows the performance evaluation results. With higher T’
and N values, the cross-state transitions will be less frequent, thus
the overhead introduced by the sanitizing mechanisms will be lower
compared with smaller 7" and N values. Even with a high cross-state
transition frequency, e.g., the SysTick handler performs cross-state
function calls every 5 ms (T = 10°), the sanitizing overheads are
still negligible.

V. CONCLUSION

ARM Cortex-M is the most popular 32-bit microcontroller archi-
tecture in the market with unique performance optimization from
its microprocessor counterparts. However, the security implication
of its optimization has not been thoroughly studied. In this paper,
we took a close look at the fast state switch mechanism of Cortex-
M TrustZone, and we presented ret2ns, an exploitation technique
that takes advantage of the fast state switch mechanism to perform
arbitrary code execution with escalated privilege. We demonstrated
the detailed methodology of ret2ns attacks with a walking example
and confirmed the feasibility of attacks on two hardware platforms.
To defeat ret2ns attacks, we designed and evaluated two address
sanitizing mechanisms with negligible runtime overhead.

ACKNOWLEDGEMENTS
This material is based upon work supported in part by National
Science Foundation (NSF) grants (2237238 and 2037798) and a

National Centers of Academic Excellence in Cybersecurity (part of
the National Security Agency) grant (H98230-22-1-0307).

REFERENCES

[1] “The Arm ecosystem ships a record 6.7 billion Arm-based chips
in a single quarter” https://www.arm.com/company/news/2021/02/

arm-ecosystem-ships-record-6-billion-arm-based- chips-in-a-single-quarter.

[2] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM computing surveys (CSUR), 2019.

[3] N. Hardy, “The Confused Deputy: (or why capabilities might have been
invented),” ACM SIGOPS Operating Systems Review, 1988.

[4] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and

B. Shastry, “Towards taming privilege-escalation attacks on android.,”

in Network and Distributed System Security (NDSS), 2012.

J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and

F. Piessens, “A tale of two worlds: Assessing the vulnerability of enclave

shielding runtimes,” in ACM SIGSAC Conference on Computer and

Communications Security, 2019.

[6] D. Suciu, S. McLaughlin, L. Simon, and R. Sion, “Horizontal privilege
escalation in trusted applications,” in USENIX Security Symposium,
2020.

[71 A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang:
Exploiting the semantic gap in trusted execution environments.,” in
Network and Distributed System Security (NDSS), 2017.

[81 V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard:
Lightweight Kernel Protection against Return-to-User Attacks,” in
USENIX Security Symposium, 2012.

[91 V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in USENIX Security Symposium, 2014.

[10] “Armv8.1-M Architecture Reference Manual.” http:/kib.kiev.ua/
x86docs/ARM/ARMARMYv8m/DDI0S53B_k_armv8m.pdf.

[11] J. Yiu, Definitive Guide to Arm Cortex-M23 and Cortex-M33 Processors.
Newnes, 2020.

[12] A. K. Iannillo, S. Rivera, D. Suciu, R. Sion, and R. State, “An REE-

independent Approach to Identify Callers of TEEs in TrustZone-enabled

Cortex-M Devices,” in ACM Cyber-Physical System Security Workshop

(CPSS), 2022.

A. Khurshid, S. D. Yalew, M. Aslam, and S. Raza, “ShieLLD: Shield-

ing Cross-zone Communication within Limited-resourced IoT Devices

running Vulnerable Software Stack,” IEEE Transactions on Dependable

and Secure Computing (TDSC), 2022.

[14] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with
privilege overlays,” in IEEE Symposium on Security and Privacy, 2017.

[15] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:
Automatic Compartments for Embedded Systems,” in USENIX Security
Symposium, 2018.

[16] Arm, “Trusted Firmware-M.” https://developer.arm.com/Tools%20and %
20Software/Trusted%20Firmware- M.

[17] Arm, “AN505: Cortex-M33 with IoT kit FPGA for MPS2+ Version
2.0.” https://developer.arm.com/tools-and- software/development-boards/
fpga-prototyping-boards/download-fpga-images.

[5

=

[13

—

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 20,2023 at 04:25:15 UTC from IEEE Xplore. Restrictions apply.

