
ACM CCS’23 Artifact Appendix: SHERLOC: Secure and Holistic
Control-Flow Violation Detection on Embedded Systems

Xi Tan
CactiLab, University at Buffalo

Ziming Zhao
CactiLab, University at Buffalo

1 Artifact Appendix

1.1 Abstract

This artifact includes the source code and documentations of
the ACM CCS’23 SHERLOC paper. The artifact demonstrates
SHERLOC’s effectiveness of control-flow violation detection
on embedded systems considering asynchronous interrupts
and context switches using an interrupt- and scheduling-aware
violation detection algorithm. The GitHub repository contains
data and scripts for setting up the environment and evaluating
the SHERLOC prototype. The experiments run on the MPS2+
FPGA prototyping board. To facilitate reproduction, the repos-
itory also includes pre-compiled benchmark applications and
firmware.

1.2 Description & Requirements

1.2.1 Security, privacy, and ethical concerns

There are no ethical concerns.

1.2.2 How to access

Source code and documentations can be accessed at
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD.

1.2.3 Hardware dependencies

The experiments run on the MPS2+ FPGA prototyping board
configured with the AN505 FPGA image. The board must be
connected to a computer using a UART connector, debugger
connector, and power supply (Figure 1).

1.2.4 Software dependencies

The experiments were evaluated on Windows 11 oper-
ating system. Python3, Putty, and Jupyter Notebook are
recommended. The pre-built benchmarks are placed
at Example/out/eval/O3/elf_ns and Example/out/e-
val/oz/elf_ns. A pre-built SHERLOC runtime is placed
at host_tools/evaluation/elf_s.

1.2.5 Benchmarks

The repository includes five benchmarks:
(1) Non-interrupt bare-metal projects built with the

BEEBS benchmark suite. The projects are at Example/Sher-
loc_S_NS/Sherloc_ns, and the BEEBS source code is in the
Sherloc_runtime/evaluation folder;

(2) Interrupt-aware bare-metal project: Blinky. The
project and its source code are available at Example/Sher-
loc_Blinky_S_NS/Sherloc_Blinky_ns;

(3) Interrupt- and scheduling-aware benchmark:
FreeRTOS. The project is located at Example/Sher-
loc_FreeRTOS_MPU_S_NS/FreeRTOS_MPU_ns, and the
FreeRTOS source code is at Sherloc_runtime/freertos;

(4) A customized trigger-based project based on FreeRTOS
is available at Trigger_S_NS/FreeRTOS_MPU_ns;

(5) Customized vulnerable projects are located at
Vulfoo_S_NS/FreeRTOS_MPU_ns (buffer overflow) and
Vulfoo_Task_S_NS/FreeRTOS_MPU_ns (malicious task
rescheduling).

1.3 Set-up
1.3.1 Installation

To get started, please follow the steps below:

1. Clone the project.

$ git clone --branch v1.0-ccs2023
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD.git↪→

2. Install additional dependencies.

$ cd ./host_tools/evaluation/
$ pip install -r requirements.txt

3. Connect and backup the board.

– Connect the board to the computer (Figure 1).

– Locate the file system of the board on your system.
Usually, the drive name is V2M_MPS2.

– Assign the E letter to the V2M_MPS2 drive.

– Backup the content of V2M_MPS2 drive.

https://github.com/CactiLab/Sherloc-Cortex-M-CFVD
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/out/eval/O3/elf_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/out/eval/Oz/elf_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/out/eval/Oz/elf_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/host_tools/evaluation/elf_s
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Sherloc_S_NS/Sherloc_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Sherloc_S_NS/Sherloc_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Sherloc_runtime/evaluation
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Sherloc_Blinky_S_NS/Sherloc_Blinky_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Sherloc_Blinky_S_NS/Sherloc_Blinky_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Sherloc_FreeRTOS_MPU_S_NS/FreeRTOS_MPU_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Sherloc_FreeRTOS_MPU_S_NS/FreeRTOS_MPU_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Sherloc_runtime/freertos
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Vulfoo_S_NS/FreeRTOS_MPU_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Vulfoo_S_NS/FreeRTOS_MPU_ns
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/Vulfoo_Task_S_NS/FreeRTOS_MPU_ns

UART
Connector

Debugger port

Power supply

Power on(hardware reset)Reset (software reset)

Figure 1: Board connection.

4. Configure the FPGA image and loading files for MPS2+
board, referring to “Using the Cortex-M33 IoT Kit Image
on MPS2+” step 7 - 11.

4.1. Download Cortex-M33 IoT Kit FPGA image from
ARM website.

* Unzip the download file, you will find Cortex-
M33_IoT_Kit_2_0/boards/Recovery folder.

* Copy the whole Recovery folder to the
V2M_MPS2 drive. Replace Recovery/M-
B/HBI0263C/AN505/image.txt with Sherloc-
Cortex-M-CFVD/Sherloc_runtime/image.txt.

4.2. If you cannot download the FPGA image from
ARM website, you can download it from: Google
Drive Link.

* Unzip the downloaded file named Cortex-
M33_IoT_kit.zip.

* Copy the contents of Cortex-M33_IoT_kit di-
rectory to the V2M_MPS2 drive.

5. Connect to the board’s serial port using Putty. Set the
baud rate to 115200. You can identify the serial port by
checking the system’s device manager.

1.3.2 Basic test

Run:

$ cd ./host_tools/evaluation/ae
$ python basic-test.py

Press the Reset button on the board. The output should
resemble the following. If no such output appears, please
check the eval.log file in the ae folder.

...
NONE: 11720703
NONE: 11720703
NONE: 11720703
NONE: 11720703
NONE: 11720703
F

1.4 Evaluation workflow

The experiments evaluate SHERLOC’s effectivenss of vali-
dating the control-flow of various systems, including non-
interrupt bare-metal systems, interrupt-aware bare-metal sys-
tems, interrupt- and scheduling-aware RTOS, and trigger-
based RTOS. The test scripts are available in the folder
host_tools/evaluation/ae.

1.4.1 Major claims

(C1) SHERLOC can provide interrupt- and scheduling-aware
control-flow violation detection (CFVD) of embedded
systems. The experiments (E1), (E2), and (E3) described
in Section 4.4 of the paper demonstrate the effectiveness.

(C2) SHERLOC can provide trigger-based CFVD. The exper-
iment (E4) described in Section 4.5 of the paper demon-
strates the effectiveness.

(C3) SHERLOC can detect control-flow hijacking, such as
buffer overflow attacks and malicious task rescheduling
in RTOS. The experiments (E5) and (E6) described in
section 5.3.2 of the paper demonstrate the effectiveness.

1.4.2 Experiments

(E1): [Non-interrupt CFVD] [2 human-minutes + 1
compute-minute]:
Execution: Run: $ python c01-non-interrupt.py. After
that, power on the board and then reset it. The power on
operation ensures that the board reloads the system.
Results: The Putty window will show like:
EVAL: 26476886, enter_exit: 11785059,

sherloc_detection: 14691827↪→

EVAL: 26493499, enter_exit: 11785133,
sherloc_detection: 14708366↪→

EVAL: 26493303, enter_exit: 11785135,
sherloc_detection: 14708168↪→

EVAL: 26493466, enter_exit: 11785133,
sherloc_detection: 14708333↪→

EVAL: 26476662, enter_exit: 11785062,
sherloc_detection: 14691600↪→

F

(E2): [Interrupt-aware CFVD] [2 human-minutes + 1
compute-minute]:
Execution: Run: $ python c01-interrupt-aware.py. Af-
ter that, power on the board and then reset it.
Results: The Putty window will show like:

https://www.keil.com/appnotes/files/apnt_300.pdf
https://www.keil.com/appnotes/files/apnt_300.pdf
https://developer.arm.com/downloads/view/AN505
https://drive.google.com/file/d/1ffqbroPjH7aKKO-HgrwG40CRtkaV-Vk_/view?usp=sharing
https://drive.google.com/file/d/1ffqbroPjH7aKKO-HgrwG40CRtkaV-Vk_/view?usp=sharing
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/host_tools/evaluation/ae
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/blob/main/host_tools/evaluation/ae/putty.log#L7
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/blob/main/host_tools/evaluation/ae/putty.log#L21

EVAL: 173604084, enter_exit: 77863659,
sherloc_detection: 95740425&↪→

(E3): [Interrupt- and scheduling-aware CFVD] [2 human-
minutes + 1 compute-minute]:
Execution: Run: $ python c01-rtos.py. After that,
power on the board and then reset it.
Results: The Putty window will show like:
EVAL: 10504233, enter_exit: 873838,

sherloc_detection: 9630395&↪→

(E4): [Trigger-based CFVD] [2 human-minutes + 1
compute-minute]:
Execution: Run: $ python c02-rtos-trigger.py. After
that, power on the board and then reset it.
Results: The Putty window will show like:
Trigger: 3977354, enter_exit: 3972225
&Trigger: 4007474, enter_exit: 3997500
&Trigger: 4016280, enter_exit: 3997503
&Trigger: 3990400, enter_exit: 3972228
&Trigger: 4012910, enter_exit: 3997497

(E5): [Buffer-overflow detection] [2 human-minutes + 1
compute-minute]:
Execution: Run: $ python c03-vulfoo.py. After that,
power on the board and then reset it.
Results: The Putty window will show like:
You ha[0]!!! illegal indirect call: 0x1f542020
Check stack. top: 1.
0x00201e5c
0x002025c8
Check task list. num: 0.

(E6): [Malicious task rescheduling detection] [2 human-
minutes + 1 compute-minute]:
Execution: Run: $ python c03-vulfoo-task.py. After
that, power on the board and then reset it.
Results: The Putty window will show like:
[0] Wrong IRQ exit: 0x00201f00, 0xffffffbc,

0xffffffbd, 0x0020264c↪→

Check stack. top: 0.
0x00202588
Check task list. num: 6.
0x00201e3c
0x0020160a
0x002026a8
0x0020264a
0x00202676
0x002026a8

1.5 Notes on Reusability
The claims focus on the functionality of SHERLOC, not its
performance. So we narrowed down the test cases. To repli-
cate the performance evaluation results from Figures 8 and 9
in our paper, we recommend to connect the board using two
USB2TTL adapters, two logic analyzer clippers, two male
and female jumper wires. Due to the page limit, please view
our connection setup on GitHub for more information.

After finishing the board connection, run the
host_tools/evaluation/eval_run.py to automatically evaluate
all benchmarks. Since we provide pre-built benchmarks,
this script will skip the project building and metadata
generation steps. If you wish to rebuild them from scratch,
ensure you have the licensed Keil IDE installed and un-
comment all xx_prepare_run() and xx_emu_run() functions
within the xx_eval_run_all() function in eval_run.py (e.g.,
beebs_eval_run_all()).

We also provide raw evaluation results at Example/out/e-
val/o3/eval_log and Example/out/eval/oz/eval_log folders. To
check them, run

$ cd ./host_tools/evaluation
$ python result.py > result.log

The result.log file displays final performances and in-
dividual sub-step contributions. Numbers may vary from the
paper due to compiler version differences.

processing beebs eval results...
bubblesort O3
result_dict: {'SHERLOC': 14772763, 'enter_exit':

64430, 'read': 12362, 'ins_identification':
11151736, 'forward': 38861, 'ss': 3505374}

↪→

↪→

eval_overhead: {'SHERLOC': 126.04, 'enter_exit':
0.55, 'read': 0.11, 'ins_identification': 95.15,
'forward': 0.33, 'ss': 29.91}

↪→

↪→

...
processing blinky eval results...
...

To keep the pre-built benchmarks, but re-generate evalua-
tion results, simply delete Example/out/eval/[o3/oz]/eval_log
folder. To build benchmarks from scratch, please delete the
whole Example/out/eval folder.

1.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/acmccs2023/.

https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/blob/main/host_tools/evaluation/ae/putty.log#L29
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/blob/main/host_tools/evaluation/ae/putty.log#L37
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/blob/main/host_tools/evaluation/ae/putty.log#L48
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/blob/main/host_tools/evaluation/ae/putty.log#L60
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main#step-2-automatically-run-those-examples
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/blob/main/host_tools/evaluation/eval_run.py
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/out/eval/O3/eval_log
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/out/eval/O3/eval_log
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/out/eval/O3/eval_log
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD/tree/main/Example/out/eval/Oz/eval_log
https://secartifacts.github.io/acmccs2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic test

	Evaluation workflow
	Major claims
	Experiments

	Notes on Reusability
	Version

