
SHERLOC: Secure and Holistic 
Control-Flow Violation Detection on 

Embedded Systems

Xi Tan and Ziming Zhao
CyberspACe securiTy and forensIcs lab (CactiLab)

University at Buffalo



Microcontroller-based Embedded Systems

All images on this page are from the Internet.

It is estimated that the world has over 250 billion 
microcontrollers [1].

More than 4.4 billion Cortex-M MCUs were shipped in the 
4th quarter of 2020 alone [2].

[1] David, R., et al, (2021). Tensorflow lite micro: Embedded machine learning for TinyML systems. Proceedings of Machine Learning and Systems, 3, 800-811.
[2] www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter.



Microcontroller-based System Characteristics

Hardware (Cortex-M as an example)

RISC architecture. Sixteen 32-bit general-purpose registers.

No MMU, but a 32-bit physical memory space.

Unprivileged memory access instructions, pointer authentication code, 
streamlined TrustZone.

Software

Developed in memory-unsafe languages, e.g., C

Most systems do not adopt privilege separation. 

Functionality implemented in Interrupt Service Routines (ISR)



Control-Flow Integrity (CFI)
Inlined CFI Enforcement

[1] Erlingsson, M. A. M. B. U., & Jigatti, J. Control-flow integrity. ACM conference on Computer and communications security 
(CCS) 2005.

Instrument at source code or binary level

Example CFI instrumentations of an x86 computed jump instruction [1]



Inlined CFI Enforcement for Microcontroller Systems

● Memory constraints 
○ Change the memory layout of the code
○ Increase the code size

● Coarse-grained forward-edge protection: label-based
● Shadow stacks need to be protected
● Existing approaches, e.g., CFICare [1], TZmCFI [2], utilize 

TrustZone to secure shadow stack but introduce a high 
run-time overhead, 

[1] Nyman, T., Ekberg, J. E., Davi, L., & Asokan, N. (2017). CFI CaRE: Hardware-supported call and return enforcement for 
commercial microcontrollers. In Research in Attacks, Intrusions, and Defenses: 20th International Symposium, RAID 2017.
[2] Kawada, T., Honda, S., Matsubara, Y., & Takada, H. (2021). TZmCFI: RTOS-aware control-flow integrity using trustzone for 
Armv8-M. International Journal of Parallel Programming.



Control-Flow Violation Detection (CFVD)

● Do not instrument code but verify instruction trace generated 
by a hardware tracer [1, 2]

● Require kernel modification; kernel is in the TCB
● Only work on unprivileged application but not kernel

[1] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griffin: Guarding control flows using intel processor trace. ACM 
SIGPLAN Notices
[2] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI: Transparent backward-edge CFVD using intel 
processor trace. In ACM on Conference on Data and Application Security and Privacy (CODASPY).



System-oriented CFVD

● Most MCU functionalities are implemented in Interrupt 
Service Routines (ISR).

● Scheduling- and interrupt-aware



Challenges for SCFVD

Interrupts that cannot 
be predetermined, E.g., 
<c7, t1>



Challenges for SCFVD

The locations the 
scheduler yield control 
to cannot be 
predetermined, E.g., ⟨𝑠2, 
𝑏5⟩ and ⟨𝑠2, 𝑐7⟩ 



Challenges for SCFVD

The trace, tracing 
operation, and CF 
verification must be 
secured from the 
privileged but 
potentially 
compromised kernel.



Sherloc Design



Sherloc Timeline

Exec.
C

on
fig

. S
A

U
Protected system

MTB
Tracing

C
on

fig
. D

eb
ug

M
on

C
on

fig
. M

TB

Y
ie

ld
 c

on
tro

l

w
at

er
m

ar
k 

hi
t

Su
sp

en
d 

M
TB

R
es

um
e 

M
TB

SCFVD

Y
ie

ld
 c

on
tro

l

MTB
Tracing

Runtime Enfor.

Secure state
Non-secure state

Runtime Config.
SHERLOC

Exec.

w
at

er
m

ar
k 

hi
t

Su
sp

en
d 

M
TB

R
es

et

SCFVD

Runtime Enfor.

CFI violation 
detected

Re
se

t H
an

dl
er

D
eb

ug
M

on
 H

an
dl

er

D
eb

ug
M

on
 H

an
dl

er



Sherloc Holistic Enforcement Policy



Security Analysis: Latency Estimation



Experiment

● Prototype: ARM Versatile Express 
Cortex-M Prototyping System MPS2+ 
configured as a Cortex-M33 CPU

● Benchmark:
○ BEEBS
○ Blinky
○ FreeRTOS

● Optimization level: -O3 and -Oz



Performance Evaluation - BEEBS



Performance Evaluation - BEEBS



Open-sourced at: 
https://github.com/CactiLab/Sherloc-Cortex-M-CFVD

Xi Tan

Ziming Zhao

Thank you!

https://github.com/CactiLab/Sherloc-Cortex-M-CFVD


Control-Flow Integrity (CFI)

Control-flow integrity (CFI) is a security property that can prevent 
control-flow hijacking by dictating that indirect control-flow 
transfers, including forward edges (indirect call and branch) and 
backward edges (return), must follow a predetermined 
control-flow graph (CFG).

[1] Erlingsson, M. A. M. B. U., & Jigatti, J. Control-flow integrity. ACM conference on Computer and communications security 
(CCS) 2005.


