CS 4910: Intro to Computer Security

Network Security V: Intrusion Detection Systems (IDS)

Instructor: Xi Tan

Next

- Network Security
 - Network Firewalls
 - Intrusion Detection Systems

Intrusion Detection

- Intrusion
 - Actions aimed at compromising the security of the target (confidentiality, integrity, availability of computing/networking resources)
- Intrusion detection
 - The identification of intrusions and report of intrusion activities
- Intrusion prevention
 - The process of both detecting intrusion activities and managing automatic responsive actions throughout the network

Intrusion Detection System (IDS) Components

- The **IDS manager** compiles data from the IDS sensors to determine if an intrusion has occurred.
- This determination is based on a set of **site policies**, which are rules and conditions that define probable intrusions.
- If an IDS manager detects an intrusion, then it sounds an alarm.

Intrusion Detection Systems

- Who is likely intruder?
 - May be outsider who got thru firewall
 - May be evil insider
- What do intruders do?
 - Launch well-known attacks
 - Launch variations on well-known attacks
 - Launch new or un-known attacks
 - Use a system to attack other systems
 - O Etc.

Intrusions

- An IDS is designed to detect automated attacks and threats, including the following:
 - O **Port scans:** information gathering intended to determine which ports on a host are open for TCP connections
 - Denial-of-service attacks: network attacks meant to overwhelm a host and shut out legitimate accesses
 - O **Malware attacks:** replicating malicious software attacks, such as Trojan horses, computer worms, viruses, etc.
 - ARP spoofing: an attempt to redirect IP traffic in a local-area network
 - O **DNS cache poisoning:** a pharming attack directed at changing a host's DNS cache to create a falsified domain-name/IP-address association

Intrusion Detection Systems

- Intrusion detection is not perfect, two types of errors are
 - o false positives: legitimate behavior of authorized users is classified as an intrusion
 - o false negatives: an intrusion is not recognized as suspicious activity
- False negatives result in higher losses than false positives
 - thus a higher rate of false positives is normally tolerated than the rate of false negatives
 - if an error rate is very high, warnings tend to get ignored
 - o proper tuning of the system is important
- The earlier intrusion is detected, the better
 - it is easier to recover while the damage is small

Intrusion Detection Systems (IDS)

- Intrusion detection system (IDS) is a security service that monitors and analyzes system events
- IDS classification
 - host-based IDS
 - monitors events and characteristics of a single host for suspicious activity
 - network-based IDS
 - monitors data on the network for traces of suspicious activity
 - often a single monitor scans data sent to/from many machines on the network
 - hybrid IDS
 - combines information gathered from hosts and network

Host-based IDS

- A host-based IDS runs on a single host
 - it is best positioned to evaluate the state of the machine
- It can monitor events and activity such as
 - login and session activity
 - frequency and location, time since last login, failed login attempts
 - events of security importance can include break-in into a dead account,
 logins from unusual locations or unusual hours, password guessing, etc.
 - program execution activity
 - monitored activity can include execution denials, resource utilization and execution frequency

Host-based IDS

- Monitored events and activity
 - o file access activity
 - record frequency of different types of file access, denial of access
 - look for abnormal usage patterns, suspicious activity such as copying system programs or opening devices directly
 - some combination of the above
 - e.g., users who login after hours often access the same files they used earlier
- If a host-based IDS runs on each host, information from different machines can be collected and managed at a central facility
 - the central manager receives aggregate information and distributes updates to all machines running the IDS

- A network-based IDS monitors traffic corresponding to many machines on a network
 - often such a monitor is passive
 - NIDS receives a copy of the traffic
 - a firewall, on the other hand, performs active filtering
 - all traffic goes directly through it
 - o active filtering adds overhead and normally needs to be minimized

Where NIDS is positioned matters

- o point 1: complete picture of traffic, lots of data
- o point 2: can recognize problems with firewall, see outgoing attacks
- points 3 and 4: increased visibility of attacks on the local network, can see internal attacks

- A NIDS is often stateful and performs deep packet inspection
 - full stream reassembly
 - o analysis at network, transport and/or application layers
 - **network layer**: IP, ICMP protocols, illegal header values, spoofed addresses
 - transport layer: analysis of TCP and UDP headers, detection of unusual packet fragmentation, floods, scans
 - application layer: understanding of DHCP, DNS, HTTP, Network File System (NSF), remote login and many other protocols; detection of buffer overflow attacks, malware propagation, etc.
 - detection of DoS attacks, scanning, malware (worms)

Example systems

- o Snort
 - can be host-based or network-based
 - can monitor traffic inline (supports intrusion prevention) or passively
 - intrusion detection/prevention is rule-based
- o Bro
 - provides passive monitoring of network traffic
 - suitable for high-speed high-volume detection
- o commercial appliances

Intrusion Detection Systems

- IDSs can be classified based on how they recognize suspicious activity
 - misuse detection (signature or heuristic based)
 - define what constitutes an intrusion attempt through a set of rules
 - e.g., specific patterns in network traffic, a combination of events
 - can detect only known/encoded intrusion attempts
 - anomaly detection
 - train the system on clean data to understand behavior of legitimate users
 - use it to monitor real data and detect anomalous behavior
 - advantages: more flexible, can detect unknown misuses
 - disadvantages: higher error rate, difficult to tune

Signature or Heuristic Detection

Signature approaches

- O Match a large collection of known patterns of malicious data against data stored on a system or in transit over a network
- O The signatures need to be large enough to minimize the false alarm rate while still detecting a sufficiently large fraction of malicious data
- O Widely used in anti-virus products, network traffic scanning proxies, and NIDS

Rule-based heuristic identification

- O Involves the use of rules for identifying known penetrations or penetrations that would exploit known weaknesses
- O Rules that identify suspicious behavior can also be defined, even when the behavior is within the bounds of established patterns of usage
- O Typically rules used are specific
- O SNORT is an example of a rule-based NIDS

Signature Detection Example

- Failed login attempts may indicate password cracking attack
- IDS could use the rule "N failed login attempts in M seconds" as signature
- If N or more failed login attempts in M seconds, IDS warns of attack
- Note that the warning is specific
 - Admin knows what attack is suspected
 - Admin can verify attack (or false alarm)

Signature Detection

- But if attacker knows the signature, he can try N-1 logins every M seconds!
- In this case, signature detection slows the attacker, but might not stop him

Signature Detection

Example: *if* (traffic contains "x90+de[^\r\n]{30}") *then* "attack detected" Advantage: Mostly accurate. But problems?

Can't detect new attacks

Signature Detection

- Advantages of signature detection
 - Simple
 - Detect known attacks
 - Know which attack at time of detection
 - Efficient (if reasonable number of signatures)
- Disadvantages of signature detection
 - Signature files must be kept up to date
 - Number of signatures may become large
 - Can only detect known attacks
 - Variation on known attack may not be detected

Anomaly Detection

- A variety of classification approaches are used:
 - Statistical
 - Analysis of the observed behavior using univariate, multivariate, or time-series models of observed metrics
 - Knowledge based
 - Approaches use an expert system that classifies observed behavior according to a set of rules that model legitimate behavior
 - Machine-learning
 - Approaches automatically determine a suitable classification model from the training data using data mining techniques

Anomaly Detection

- Anomaly detection systems look for unusual or abnormal behaviors
- There are (at least) two challenges
 - O What is normal for this system?
 - O How "far" from normal is abnormal?
- Statistics is obviously required here!
 - The mean defines normal
 - The variance indicates how far abnormal lives from normal

Anomaly Detection

- Advantages
 - Chance of detecting unknown attacks
 - May be more efficient (since no signatures)
- Disadvantages
 - Reliability is unclear
 - High false positive/false negative
 - Anomaly detection indicates something unusual, but lack of specific info on possible attack!

- Today, cannot be used alone
- Must be used with a signature detection system

Honeypots

- A further component of intrusion detection technology is the honeypot
- Decoy systems designed to:
 - O Lure a potential attacker away from critical systems.
 - O Collect information about the attacker's activity.
 - O Encourage the attacker to stay on the system long enough for administrators to respond.
- Systems are filled with fabricated information that a legitimate user of the system wouldn't access
- Resources that have no production value
 - O Therefore incoming communication is most likely a probe, scan, or attack
 - O Initiated outbound communication suggests that the system has probably been compromised

Honeypots

Example of Honeypot Deployment

Summary

- Firewalls: first line of defense
- Intrusion detection systems
 - Based on deploy position:
 - host-based: best positioned to detect attacks on a machine
 - network-based: monitors traffic of the entire network
 - hybrid
 - O Based on detection method:
 - signature-based: effective, but don't recognize new attacks
 - anomaly-based: can find novel attacks, but often result in many false positives
- Effort must be applied to protect the IDS itself from attacks