
| 1

CS 4910: Intro to Computer
Security

Instructor: Xi Tan

Software Security I: Background Knowledge

| 2

● Lab 3:
○ Buffer-Overflow Attack (Set-UID Version)
○ Deadline: 5/05

● Homework 4
○ Deadline: 04/23

● Research Paper:
○ Deadline: 04/14 4/21

Updates

| 3

● Previous topics
○ CIA
○ Authentication
○ Access control
○ Database security
○ Malicious software
○ Network security

Review

| 4

Software Security
Agenda

● Background
● Buffer-overflow attack
● Buffer-overflow defense

| 5

● Background knowledge
○ Compiler, linker, loader
○ x86 and x86-64 architectures and ISA
○ Set-UID programs

Today

| 6

Compiler, linker, and loader

| 7

From a C program to a process

Pre-processing Compilation Assembly Linking Loading

| 8

Validation (permissions, memory requirements etc.)

Operating system starts by setting up a new process for the program to run in,
including a virtual address space.

The operating system maps an interpreter into the process’s virtual memory

Loading and Executing a Binary Program on Linux

| 9

The interpreter loads the binary into its virtual address space (the same space in
which the interpreter is loaded).

It then parses the binary to find out (among other things) which dynamic
libraries the binary uses.

The interpreter maps these into the virtual address space (using mmap or an
equivalent function) and then performs any necessary last-minute relocations in
the binary’s code sections to fill in the correct addresses for references to the
dynamic libraries.

Interpreter, e.g., /lib/ld-linux.so in Linux

| 10

Compiling a C program behind the scene (add_32 add_64)

#include "add.h"

#define BASE 50

int add(int a, int b)
{ return a + b +
BASE;}

#ifndef ADD_H
#define ADD_H

int add(int, int);

#endif

/* This program has an integer overflow vulnerability. */
#include "add.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define USAGE "Add two integers with 50. Usage: add a b\n"

int main(int argc, char *argv[])
{
 int a = 0;
 int b = 0;

 if (argc != 3)
 {
 printf(USAGE);
 return 0;}

 a = atoi(argv[1]);
 b = atoi(argv[2]);
 printf("%d + %d + 50 = %d\n", a, b, add(a, b));
}

gcc -Wall -save-temps -P -m32 -O2 add.c main.c -o add_32

add.c add.h main.c

gcc -Wall -save-temps -P -O2 add.c main.c -o add_64

| 11

X86 architecture

| 12

There are 5 integer data types:

Byte – 8 bits.
Word – 16 bits.
Dword, Doubleword – 32 bits.
Quadword – 64 bits.
Double quadword – 128 bits.

Data Types

| 13

Endianness
● Little Endian (Intel, ARM)

Least significant byte has lowest address
Dword address: 0x0
Value: 0x78563412

● Big Endian
Least significant byte has highest address
Dword address: 0x0
Value: 0x12345678

0x12Address 0

0x34Address 1

0x56Address 2

0x78Address 3

| 14

Base Registers
There are

● Eight 32-bit “general-purpose” registers,
● One 32-bit EFLAGS register,
● One 32-bit instruction pointer register (eip), and
● Other special-purpose registers.

| 15

The General-Purpose Registers
● 8 general-purpose registers
● esp is the stack pointer
● ebp is the base pointer
● esi and edi are source and

destination index registers for
array and string operations

| 16

The General-Purpose Registers
● The registers eax, ebx, ecx, and

edx may be accessed as 32-bit,
16-bit, or 8-bit registers.

● The other four registers can be
accessed as 32-bit or 16-bit.

| 17

EFLAGS Register
The various bits of the 32-bit EFLAGS register are set (1) or reset/clear (0)
according to the results of certain operations.

We will be interested in, at most, the bits

CF – carry flag
PF – parity flag
ZF – zero flag
SF – sign flag

| 18

Instruction Pointer (EIP)

Finally, there is the EIP register, which is the instruction pointer (program
counter). Register EIP holds the address of the next instruction to be executed.

| 19

Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

| 20

Instructions
Each instruction is of the form

label: mnemonic operand1, operand2, operand3
The label is optional.

The number of operands is 0, 1, 2, or 3, depending on the mnemonic .

Each operand is either
● An immediate value,
● A register, or
● A memory address.

| 21

Source and Destination Operands
Each operand is either a source operand or a destination operand.

A source operand, in general, may be
● An immediate value,
● A register, or
● A memory address.

A destination operand, in general, may be
● A register, or
● A memory address.

| 22

Instructions
hlt – 0 operands
halts the central processing unit (CPU) until the next external interrupt is fired

inc – 1 operand; inc <reg>, inc <mem>

add – 2 operands; add <reg>,<reg>

imul – 1, 2, or 3 operands; imul <reg32>,<reg32>,<con>

| 23

Intel Syntax Assembly and Disassembly
Machine instructions generally fall into three categories: data movement,
arithmetic/logic, and control-flow.

<reg32> Any 32-bit register (eax, ebx, ecx, edx, esi, edi, esp, or ebp)
<reg16> Any 16-bit register (ax, bx, cx, or dx)
<reg8> Any 8-bit register (ah, bh, ch, dh, al, bl, cl, or dl)
<reg> Any register
<mem> A memory address (e.g., [eax] or [eax + ebx*4]); [] square brackets
<con32> Any 32-bit immediate
<con16> Any 16-bit immediate
<con8> Any 8-bit immediate
<con> Any 8-, 16-, or 32-bit immediate

| 24

Addressing Memory
Move from source (operand 2) to destination (operand 1)
(read as MOVE FROM x to y)

mov [eax], ebx Load 4 bytes from the EBX to the memory address in EAX.

mov eax, [esi - 4] Move 4 bytes at memory address ESI - 4 into EAX.

mov [esi + eax * 1], cl Move the contents of CL into the byte at address ESI+EAX*1.

mov edx, [esi + ebx*4] Move the 4 bytes of data at address ESI+4*EBX into EDX.

| 25

Addressing Memory
The size directives BYTE PTR, WORD PTR, and DWORD PTR serve this purpose, indicating
sizes of 1, 2, and 4 bytes respectively.

mov [ebx], 2 isn’t this ambiguous? We can have a default.

mov BYTE PTR [ebx], 2 Move 2 into the single byte at the address stored in EBX.

mov WORD PTR [ebx], 2 Move the 16-bit integer representation of 2 into the 2 bytes
starting at the address in EBX.

mov DWORD PTR [ebx], 2 Move the 32-bit integer representation of 2 into the 4 bytes
starting at the address in EBX.

| 26

Data Movement Instructions
push — Push on stack; decrements ESP by 4, then places the operand at the location ESP
points to.

Syntax
push <reg32>
push <mem>
push <con32>

Examples
push eax — push eax on the stack
push [var] — push the 4 bytes at address var onto the stack

| 27

Data Movement Instructions

pop — Pop from stack

Syntax
pop <reg32>
pop <mem>

Examples
pop edi — pop the top element of the stack into EDI.
pop [ebx] — pop the top element of the stack into memory at the four bytes
starting at location EBX.

| 28

Arithmetic and Logic Instructions
add eax, 10 — EAX is set to EAX + 10
addb byte ptr [eax], 10 — add 10 to the single byte stored at memory address stored in EAX

sub al, ah — AL is set to AL - AH
sub eax, 216 — subtract 216 from the value stored in EAX

dec eax — subtract one from the contents of EAX

imul eax, [ebx] — multiply the contents of EAX by the 32-bit contents of the memory at location EBX.
Store the result in EAX.

shr ebx, cl — Store in EBX the floor of result of dividing the value of EBX by 2n where n is the value in
CL.

| 29

Control Flow Instructions
jmp — Jump

Transfers program control flow to the instruction at the memory location indicated by the operand.

Syntax
jmp <label> # direct jump
jmp <reg32> # indirect jump

Example
jmp begin — Jump to the instruction labeled begin.

| 30

Control Flow Instructions
jcondition — Conditional jump

Syntax
je (jump when equal)
jne (jump when not equal)
jz (jump when last result was zero)
jg (jump when greater than)
jge (jump when greater than or equal to)
jl (jump when less than)
jle (jump when less than or equal to)

Example
cmp ebx, eax
jle done

| 31

Control Flow Instructions
cmp — Compare

Syntax
cmp <reg>, <reg>
cmp <mem>, <reg>
cmp <reg>, <mem>
cmp <con>, <reg>

Example
cmp byte ptr [ebx], 10
jeq loop

If the byte stored at the memory location in EBX is equal to the integer constant 10, jump to the
location labeled loop.

| 32

Control Flow Instructions
call — Subroutine call

The call instruction first pushes the current code location onto the hardware supported stack in
memory, and then performs an unconditional jump to the code location indicated by the label
operand. Unlike the simple jump instructions, the call instruction saves the location to return to when
the subroutine completes.

Syntax
call <label>
call <reg32>
call <mem>

| 33

Control Flow Instructions
ret — Subroutine return

The ret instruction implements a subroutine return mechanism. This instruction pops a code location
off the hardware supported in-memory stack to the program counter.

Syntax
ret

| 34

The Run-time Stack
The run-time stack supports procedure calls and the passing of parameters between procedures.
The stack is located in memory.

The stack grows towards low memory.

When we push a value, esp is decremented.

When we pop a value, esp is incremented.

| 35

Stack Instructions
enter — Create a function frame

Equivalent to:

push ebp
mov ebp, esp
sub esp, Imm

| 36

Stack Instructions
leave — Releases the function frame set up by an earlier ENTER instruction.

Equivalent to:

mov esp, ebp
pop ebp

| 37

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

| 38

amd64 architecture

| 39

Registers on x86 and x86-64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

| 40

x86 vs. x86-64 (code/ladd)
/*
This program has an integer overflow vulnerability.
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

long long ladd(long long *xp, long long y)
{
 long long t = *xp + y;
 return t;
}

gcc -Wall -m32 -O2 main.c -o ladd

main.c

gcc -Wall -O2 main.c -o ladd64

int main(int argc, char *argv[])
{
 long long a = 0;
 long long b = 0;

 if (argc != 3)
 {
 printf("Usage: ladd a b\n");
 return 0;
 }

 printf("The sizeof(long long) is %d\n", sizeof(long long));

 a = atoll(argv[1]);
 b = atoll(argv[2]);

 printf("%lld + %lld = %lld\n", a, b, ladd(&a, b));
}

| 41

x86 vs. x86-64 (code/ladd)

000012c0 <ladd>:
 12c4: 8b 44 24 04 mov eax,DWORD PTR [esp+0x4]
 12c8: 8b 50 04 mov edx,DWORD PTR [eax+0x4]
 12cb: 8b 00 mov eax,DWORD PTR [eax]
 12cd: 03 44 24 08 add eax,DWORD PTR [esp+0x8]
 12d1: 13 54 24 0c adc edx,DWORD PTR [esp+0xc]
 12d5: c3 ret

x86-64

0000000000001220 <ladd>:
 1224: 48 8b 07 mov rax,QWORD PTR [rdi]
 1227: 48 01 f0 add rax,rsi
 122a: c3 ret

x86

objdump -M intel -d ladd_32
objdump -M intel -d ladd_64

| 42

Set-UID Programs

| 43

Real UID, Effective UID, and Saved UID
Each Linux/Unix process has 3 UIDs associated with it.

Real UID (RUID): This is the UID of the user/process that created THIS process. It can be
changed only if the running process has EUID=0.

Effective UID (EUID): This UID is used to evaluate privileges of the process to perform a
particular action. EUID can be changed either to RUID, or SUID if EUID!=0. If EUID=0, it
can be changed to anything.

Saved UID (SUID): If the binary image file, that was launched has a Set-UID bit on, SUID
will be the UID of the owner of the file. Otherwise, SUID will be the RUID.

| 44

Set-UID Program
The kernel makes the decision whether a process has the privilege by looking on the
EUID of the process.

For non Set-UID programs, the effective uid and the real uid are the same. For Set-UID
programs, the effective uid is the owner of the program, while the real uid is the user of
the program.

What will happen is when a setuid binary executes, the process changes its Effective User
ID (EUID) from the default RUID to the owner of this special binary executable file which
in this case is - root.

| 45

| 46

Example: rdsecret
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
int main(int argc, char *argv[])
{
 FILE *fp = NULL;
 char buffer[100] = {0};
 // get ruid and euid
 uid_t uid = getuid();
 struct passwd *pw = getpwuid(uid);
 if (pw)
 {
 printf("UID: %d, USER: %s.\n", uid, pw->pw_name);
 }
 uid_t euid = geteuid();
 pw = getpwuid(euid);

main.c

if (pw)
{
 printf("EUID: %d, EUSER: %s.\n", euid, pw->pw_name);
}
 print_flag();

 return(0);
}
void print_flag()
{
 FILE *fp;
 char buff[MAX_FLAG_SIZE];
 fp = fopen("flag","r");
 fread(buff, MAX_FLAG_SIZE, 1, fp);
 printf("flag is : %s\n", buff);
 fclose(fp);
}

| 47

ELF Binary Files Stack

| 48

ELF Files
The Executable and Linkable Format (ELF) is a common standard file format for
executable files, object code, shared libraries, and core dumps. Filename extension none,
.axf, .bin, .elf, .o, .prx, .puff, .ko, .mod and .so

Contains the program and its data. Describes how the program should be loaded
(program/segment headers). Contains metadata describing program components
(section headers).

| 49

Commnad file

file /bin/ls

| 50

INTERP: defines the library that should be used to load this ELF
into memory.
LOAD: defines a part of the file that should be loaded into
memory.

Sections:
.text: the executable code of your program.
.plt and .got: used to resolve and dispatch library calls.
.data: used for pre-initialized global writable data (such as
global arrays with initial values)
.rodata: used for global read-only data (such as string
constants)
.bss: used for uninitialized global writable data (such as global
arrays without initial values)

| 51

Tools for ELF
gcc to make your ELF.
readelf to parse the ELF header.
objdump to parse the ELF header and disassemble the source code.
nm to view your ELF's symbols.
patchelf to change some ELF properties.
objcopy to swap out ELF sections.
strip to remove otherwise-helpful information (such as symbols).
kaitai struct (https://ide.kaitai.io/) to look through your ELF interactively.

https://ide.kaitai.io/

| 52

Memory Map of a Linux Process

| 53

Memory Map of Linux Process (32 bit)
Each process in a multi-tasking OS runs in its own memory sandbox.

This sandbox is the virtual address space, which in 32-bit mode is always a 4GB
block of memory addresses.

These virtual addresses are mapped to physical memory by page tables, which
are maintained by the operating system kernel and consulted by the processor.

| 54

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-
memory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

| 55

/proc/pid_of_process/maps
Example processmap.c

cat /proc/pid/maps
pmap -X pid
pmap -X `pidof pm`

#include <stdio.h>
#include <stdlib.h>

int main()
{
 getchar();
 return 0;
}

| 56

| 57

Memory Map of Linux Process (64 bit system)

