
| 1

CS 4910: Intro to Computer
Security

Instructor: Xi Tan

Software Security II:
function stack

| 2

● Understand how stack works in Linux x86/64

Objectives

| 3

C/C++ Function in x86
What information do we need to call a function at runtime? Where are they stored?
● Code
● Parameters
● Return value
● Global variables
● Local variables
● Temporary variables
● Return address
● Function frame pointer
● Previous function Frame pointer

| 4

Global and Local Variables in C/C++
Variables that are declared inside a function or block are called local variables. They can
be used only by statements that are inside that function or block of code. Local variables
are not known to functions outside their own.

Global variables are defined outside a function. Global variables hold their values
throughout the lifetime of your program and they can be accessed inside any of the
functions defined for the program.

In the definition of function parameters which are called formal parameters. Formal
parameters are similar to local variables.

| 5

Global and Local Variables (code/globallocalv)

int main(int argc, char *argv[])
{
int l_i = 10;
int l_u;

printf("g_i is at %p\n", &g_i);
printf("g_u is at %p\n", &g_u);

printf("l_i in main() is at %p\n", &l_i);
printf("l_u in main() is at %p\n", &l_u);

func(10);
}

Tools: readelf; nm

char g_i[] = "I am an initialized global variable\n";
char* g_u;

int func(int p)
{
int l_i = 10;
int l_u;

printf("l_i in func() is at %p\n", &l_i);
printf("l_u in func() is at %p\n", &l_u);
printf("p in func() is at %p\n", &p);
return 0;

}

| 6

Global and Local Variables (code/globallocalv 32bit)

| 7

Global and Local Variables (code/globallocalv 64bit)

| 8

C/C++ Function in x86/64
What information do we need to call a function at runtime? Where are they stored?
● Code [.text]
● Parameters [mainly stack (32bit); registers + stack (64bit)]
● Return value [eax, rax]
● Global variables [.bss, .data]
● Local variables [stack; registers]
● Temporary variables [stack; registers]
● Return address [stack]
● Function frame pointer [ebp, rbp]
● Previous function Frame pointer [stack]

| 9

Stack

Stack is essentially scratch memory for functions
● Used in MIPS, ARM, x86, and x86-64 processors

Starts at high memory addresses, and grows down

Functions are free to push registers or values onto
the stack, or pop values from the stack into registers

Stack “Top”

Stack
Grows
Down

Increasing
Addresses

Stack “Bottom”

esp

| 10

Stack

The assembly language supports this on x86
● esp/rsp holds the address of the top of the stack
● push eax/rax

● decrements the stack pointer (esp/rbp) then
● stores the value in eax/rax to the location pointed to by the stack pointer

● pop eax/rax
● stores the value at the location pointed to by the stack pointer into eax/rax,
● increments the stack pointer (esp/rsp)

| 11

x86/64 Instructions that affect Stack
push, pop, call, ret, enter, leave

| 12

x86/64 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp/rsp

push eax/rax

High

Low

After

Some value Z

Some value Y

Some value X

esp/rsp eax/rax

| 13

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp

High

Low

pop eax

After: eax = X

Some value Z

Some value Y

| 14

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp

call eax

| 15

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp

Some value Z

Some value Y

esp

eip

Some value X

addr Ins
0x0001 call eax
0x0004 pop ebx

call eax

| 16

x86 Instructions that affect Stack

Before: After: eip = eax

The call instruction does two things:

1. Push the address of next instruction to the stack
2. Move the dest address to %eip

Some value Z

Some value Y

Some value Xesp

Some value Z

Some value Y

0x0004

Some value X

esp

addr Ins
0x0001 call eax
0x0004 pop ebx

eip

call eax

| 17

x86 Instructions that affect Stack

Some value Z

Some value Y

Some value Xesp

Before:

ret

| 18

pop ebp
ret
nop

x86 Instructions that affect Stack

The ret instruction pops the top of the stack to eip, so the
CPU continues to execute from there

Some value Z

Some value Y

Some value Xesp

Some value Z

Some value Y

eip

Some value X

Before:

esp

ret

| 19

pop ebp
ret
nop

x86 Instructions that affect Stack

After: eip = X

The ret instruction pops the top of the stack to eip, so the
CPU continues to execute from there

Some value Z

Some value Y

Some value Xesp

Some value Z

Some value Yesp

eip

Some value X

Before:

ret

| 20

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp

enter

| 21

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp

push ebp
mov ebp, esp
sub esp, #imm

enter

eip

Some value Z

Some value Y

Some value Xesp

After:

| 22

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp

push ebp
mov ebp, esp
sub esp, #imm

enter

eip

Some value Z

Some value Y

Some value X

esp Old ebp

After:

| 23

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Some value Xesp

push ebp
mov ebp, esp
sub esp, #imm

enter

eip

Some value Z

Some value Y

Some value X

ebp, esp Old ebp

After:

| 24

x86 Instructions that affect Stack

Before: After:

Some value Z

Some value Y

Some value Xesp

ebp

push ebp
mov ebp, esp
sub esp, #imm

esp

Some value Z

Some value Y

Some value X

Old ebp

#imm bytes

enter

| 25

x86 Instructions that affect Stack

Before:

Some value Z

Some value Y

Old ebpebp

#imm bytes
esp

leave

| 26

x86 Instructions that affect Stack

Before: After

Some value Z

Some value Y

Old ebpebp

Some value Z

Some value Y

mov esp, ebp
pop ebp

#imm bytes
esp

leave

eip

Old ebpebp

#imm bytes
esp

| 27

x86 Instructions that affect Stack

Before: After

Some value Z

Some value Y

Old ebpebp

Some value Z

Some value Y

mov esp, ebp
pop ebp

#imm bytes
esp

leave

eip

Old ebpebp, esp

#imm bytes

| 28

x86 Instructions that affect Stack

Before: After: ebp = old ebp

Some value Z

Some value Y

Old ebpebp

Some value Z

Some value Y

mov esp, ebp
pop ebp

#imm bytes
esp

leave

Old ebpebp

#imm bytes

| 29

Function Frame
Functions would like to use the stack to allocate space for their local variables.
Can we use the stack pointer (esp/rsp) for this?
● Yes, however stack pointer can change throughout program execution

Frame pointer points to the start of the function's frame on the stack
● Each local variable will be (different) offsets of the frame pointer
● In x86/64, frame pointer is called the base pointer, and is stored in ebp/rbp

| 30

Function Frame
A function’s Stack Frame
• Starts with where ebp/rbp points to
• Ends with where esp/rsp points to

| 31

Calling Convention
Information, such as parameters, must be stored on the stack in order to call the
function. Who should store that information? Caller? Callee?

Thus, we need to define a convention of who pushes/stores what values on the
stack to call a function
● Varies based on processor, operating system, compiler, or type of call

| 32

x86 (32 bit) Linux Calling Convention (cdecl)
Caller (in this order)
● Pushes arguments onto the stack (in right to left order)
● Execute the call instruction (pushes address of instruction after call, then

moves dest to eip)

Callee
● Pushes previous frame pointer onto stack (ebp)
● Setup new frame pointer (mov ebp, esp)
● Creates space on stack for local variables (sub esp, #imm)
● Ensures that stack is consistent on return
● Return value in eax register

| 33

Callee Allocate a stack (Function prologue)
Three instructions:

push ebp; (pushes previous frame pointer onto stack)
mov ebp, esp; (change the base pointer to the stack)
sub esp, 10; (allocating a local stack space)

enter

| 34

Callee Deallocate a stack (Function epilogue)

mov esp, ebp (the bottom of the current function stack is the top of the caller’s stack)

pop ebp (restore the bottom of caller’s stack)
ret

Leave

| 35

Global and Local Variables (code/globallocalv)

int main(int argc, char *argv[])
{
int l_i = 10;
int l_u;

printf("g_i is at %p\n", &g_i);
printf("g_u is at %p\n", &g_u);

printf("l_i in main() is at %p\n", &l_i);
printf("l_u in main() is at %p\n", &l_u);

func(10);
}

Tools: readelf; nm

char g_i[] = "I am an initialized global variable\n";
char* g_u;

int func(int p)
{
int l_i = 10;
int l_u;

printf("l_i in func() is at %p\n", &l_i);
printf("l_u in func() is at %p\n", &l_u);
printf("p in func() is at %p\n", &p);
return 0;

}

| 36

Global and Local Variables (code/globallocalv)
59d: 55 push ebp
59e: 89 e5 mov ebp,esp
5a0: 83 ec 18 sub esp,0x18
5a3: c7 45 f4 0a 00 00 00 mov DWORD PTR [ebp-0xc],0xa
5aa: 83 ec 08 sub esp,0x8
5ad: 8d 45 f4 lea eax,[ebp-0xc]
5b0: 50 push eax
5b1: 68 00 07 00 00 push 0x700
5b6: e8 fc ff ff ff call 5b7 <func+0x1a>
5bb: 83 c4 10 add esp,0x10
5be: 83 ec 08 sub esp,0x8
5c1: 8d 45 f0 lea eax,[ebp-0x10]
5c4: 50 push eax
5c5: 68 18 07 00 00 push 0x718
5ca: e8 fc ff ff ff call 5cb <func+0x2e>
5cf: 83 c4 10 add esp,0x10
5d2: 83 ec 08 sub esp,0x8
5d5: 8d 45 08 lea eax,[ebp+0x8]
5d8: 50 push eax
5d9: 68 30 07 00 00 push 0x730
5de: e8 fc ff ff ff call 5df <func+0x42>
5e3: 83 c4 10 add esp,0x10
5e6: b8 00 00 00 00 mov eax,0x0
5eb: c9 leave
5ec: c3 ret

657: 83 ec 0c sub esp,0xc
65a: 6a 0a push 0xa
65c: e8 3c ff ff ff call 59d <func>
661: 83 c4 10 add esp,0x10

Function main()

Function func()

int func(int p)
{
int l_i = 10;
int l_u;

printf("l_i in func() is at %p\n", &l_i);
printf("l_u in func() is at %p\n", &l_u);
printf("p in func() is at %p\n", &p);
return 0;

}

| 37

Draw the stack (x86 cdecl)

| 38

x86 Stack Usage (32bit)

● Negative indexing over ebp
mov eax, [ebp-0x8]
lea eax, [ebp-24]

● Positive indexing over ebp
mov eax, [ebp+8]
mov eax, [ebp+0xc]

● Positive indexing over esp

| 39

x86 Stack Usage (32bit)

● Accesses local variables (negative indexing over ebp)
mov eax, ebp-0x8 value at ebp-0x8
lea eax, ebp-24 address as ebp-0x24

● Stores function arguments from caller (positive indexing over ebp)
mov eax, ebp+8 1st arg
mov eax, ebp+0xc 2nd arg

● Positive indexing over esp
Function arguments to callee

| 40

Stack example: code/factorial

int fact(int n)
{
printf("---In fact(%d)\n", n);
printf("&n is %p\n", &n);

if (n <= 1)
return 1;

return fact(n-1) * n;
}

int main(int argc, char *argv[])
{
if (argc != 2)
{
printf("Usage: fact integer\n");
return 0;

}

printf("The factorial of %d is %d\n.",
atoi(argv[1]), fact(atoi(argv[1])));
}

| 41

Stack example: code/fivepara

int func(int a, int b, int c, int d, int e)
{
return a + b + c + d + e;

}

int main(int argc, char *argv[])
{
func(1, 2, 3, 4, 5);

}

X86 disassembly

| 42

globallocalv_fast_32
fastcall

On x86-32 targets, the fastcall attribute causes the compiler to pass the first argument (if
of integral type) in the register ECX and the second argument (if of integral type) in the
register EDX. Subsequent and other typed arguments are passed on the stack. The called
function pops the arguments off the stack. If the number of arguments is variable all
arguments are pushed on the stack.

int __attribute__ ((fastcall)) func(int p)

| 43

x86-64 (64 bit) Linux Calling Convention
Caller
● Use registers to pass arguments to callee. Register order (1st, 2nd, 3rd, 4th,

5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9, ... (use stack for more arguments)

| 44

Stack example: code/fivepara

int func(int a, int b, int c, int d, int e)
{
return a + b + c + d + e;

}

int main(int argc, char *argv[])
{
func(1, 2, 3, 4, 5);

}

X86-64 disassembly

| 45

X86-64 Stack Usage
● Access local variables (negative indexing over rbp)
mov rax, [rbp-8]
lea rax, [rbp-0x24]

● Access function arguments from caller
mov rax, rdi

● Setup parameters for callee
mov rdi, rax

