
| 1

CS 4910: Intro to Computer
Security

Instructor: Xi Tan

Software Security IV:
stack-based buffer overflow - defense

| 2Review
● Identify a buffer overflow in a program
● Exploit a buffer overflow vulnerability

○ Overwrite local variables (data-only attack)
○ Overwrite the return address (control-flow hijacking)

| 3This class

● Stack-based buffer overflow defenses
■ Base and bound check
■ Shadow stack
■ Stack Canary/Cookie
■ Data execution prevention (DEP, NX, etc.)
■ ASLR

| 4Attacker’s Goal
Take control of the victim’s machine

● Hijack the execution flow of a running program
● Execute arbitrary code

Requirements
● Inject attack code or attack parameters
● Abuse vulnerability and modify memory such that control flow is redirected

Change of control flow
● alter a code pointer (RET, function pointer, etc.)
● change memory region that should not be accessed

| 5Overflow Types
Overflow some code pointer

● Overflow memory region on the stack
○ overflow function return address
○ overflow function frame (base) pointer
○ overflow longjmp buffer

● Overflow (dynamically allocated) memory region on the heap
● Overflow function pointers

○ stack, heap

| 6Other pointers?
Can we exploit other pointers as well?

● Memory that is used in a value to influence mathematical operations, conditional
jumps.

● Memory that is used as a read pointer (or offset), allowing us to force the program
to access arbitrary memory.

● Memory that is used as a write pointer (or offset), allowing us to force the program
to overwrite arbitrary memory.

● Memory that is used as a code pointer (or offset), allowing us to redirect program
execution!

Typically, you use one or more vulnerabilities to achieve multiple of these effects.

| 7Defenses
● Prevent buffer overflow

○ A direct defense
○ Could be accurate but could be slow
○ Good in theory, but not practical in real world

● Make exploit harder
○ An indirect defense
○ Could be inaccurate but could be fast
○ Simple in theory, widely deployed in real world

| 8Examples
● Base and bound check

○ Prevent buffer overflow!
○ A direct defense

● Stack Canary/Cookie
○ An indirect defense
○ Prevent overwriting return address

● Data execution prevention (DEP, NX, etc.)
○ An indirect defense
○ Prevent using of shellcode on stack

…

| 9

Defense-1:
Base and bound check

| 10Spatial Memory Safety – Base and Bound check
char *a
• char *a_base;
• char *a_bound;

a = (char*)malloc(512)
• a_base = a;
• a_bound = a+512

Access must be between [a_base, a_bound)
• a[0], a[1], a[2], ..., and a[511] are OK
• a[512] NOT OK
• a[-1] NOT OK

| 11Spatial Memory Safety – Base and Bound check
Propagation

• char *b = a;
• b_base = a_base;
• b_bound = a_bound;

• char *c = &b[2];
• c_base = b_base;
• c_bound = b_bound;

| 12Overhead - Based and Bound
+2x overhead on storing a pointer
• char *a

• char *a_base;
• char *a_bound;

+2x overhead on assignment
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

+2 comparisons added on access
• c[i]

• if(c+i >= c_base)
• if(c+i < c_bound)

| 13

PLDI 09

| 14

ASPLOS 09

| 15

Defense-2:
Shadow Stack

| 16Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

| 17Traditional Shadow Stack

| 18Traditional Shadow Stack

| 19Overhead - Traditional Shadow Stack

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

| 20Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

| 21Parallel Shadow Stack

| 22Overhead Comparison
The overhead is roughly 10% for a traditional shadow stack.

The parallel shadow stack overhead is 3.5%.

| 23

Defense-3:
Stack Cookie; Stack Canary

specific to sequential stack overflow

| 24

| 25StackGuard
A compiler technique that attempts to eliminate buffer overflow vulnerabilities

● No source code changes
● Patch for the function prologue and epilogue

○ Prologue: push an additional value into the stack (canary)
○ Epilogue: check the canary value hasn’t changed. If changed, exit.

| 26Buffer Overflow Example: overflowret4

int vulfoo()
{

char buf[30];

gets(buf);
return 0;

}

int main(int argc, char *argv[])
{

vulfoo();
printf("I pity the fool!\n");

}

| 27With and without Canary 32bit

000011ed <vulfoo>:
11ed: f3 0f 1e fb endbr32
11f1: 55 push ebp
11f2: 89 e5 mov ebp,esp
11f4: 83 ec 38 sub esp,0x38
11f7: 83 ec 0c sub esp,0xc
11fa: 8d 45 d0 lea eax,[ebp-0x30]
11fd: 50 push eax
11fe: e8 fc ff ff ff call 11ff <vulfoo+0x12>
1203: 83 c4 10 add esp,0x10
1206: b8 00 00 00 00 mov eax,0x0
120b: c9 leave
120c: c3 ret

0000120d <vulfoo>:
120d: f3 0f 1e fb endbr32
1211: 55 push ebp
1212: 89 e5 mov ebp,esp
1214: 53 push ebx
1215: 83 ec 34 sub esp,0x34
1218: e8 81 00 00 00 call 129e <__x86.get_pc_thunk.ax>
121d: 05 b3 2d 00 00 add eax,0x2db3
1222: 65 8b 0d 14 00 00 00 mov ecx,DWORD PTR gs:0x14
1229: 89 4d f4 mov DWORD PTR [ebp-0xc],ecx
122c: 31 c9 xor ecx,ecx
122e: 83 ec 0c sub esp,0xc
1231: 8d 55 cc lea edx,[ebp-0x34]
1234: 52 push edx
1235: 89 c3 mov ebx,eax
1237: e8 54 fe ff ff call 1090 <gets@plt>
123c: 83 c4 10 add esp,0x10
123f: b8 00 00 00 00 mov eax,0x0
1244: 8b 4d f4 mov ecx,DWORD PTR [ebp-0xc]
1247: 65 33 0d 14 00 00 00 xor ecx,DWORD PTR gs:0x14
124e: 74 05 je 1255 <vulfoo+0x48>
1250: e8 db 00 00 00 call 1330 <__stack_chk_fail_local>
1255: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
1258: c9 leave
1259: c3 ret

or4

or4_cookie

| 28With and without Canary

or4 or4_cookie

...

...

RET

Saved ebp

buf 0x30

...

...

RET

Saved ebp

buf

0x34

ebp ebp

Canaryebp - 0xc

0x28 = 40

| 29With and without Canary 64bit

0000000000001169 <vulfoo>:
1169: f3 0f 1e fa endbr64
116d: 55 push rbp
116e: 48 89 e5 mov rbp,rsp
1171: 48 83 ec 30 sub rsp,0x30
1175: 48 8d 45 d0 lea rax,[rbp-0x30]
1179: 48 89 c7 mov rdi,rax
117c: b8 00 00 00 00 mov eax,0x0
1181: e8 ea fe ff ff call 1070 <gets@plt>
1186: b8 00 00 00 00 mov eax,0x0
118b: c9 leave
118c: c3 ret

0000000000401176 <vulfoo>:
401176: f3 0f 1e fa endbr64
40117a: 55 push rbp
40117b: 48 89 e5 mov rbp,rsp
40117e: 48 83 ec 30 sub rsp,0x30
401182: 64 48 8b 04 25 28 00 mov rax,QWORD PTR fs:0x28
401189: 00 00
40118b: 48 89 45 f8 mov QWORD PTR [rbp-0x8],rax
40118f: 31 c0 xor eax,eax
401191: 48 8d 45 d0 lea rax,[rbp-0x30]
401195: 48 89 c7 mov rdi,rax
401198: b8 00 00 00 00 mov eax,0x0
40119d: e8 de fe ff ff call 401080 <gets@plt>
4011a2: b8 00 00 00 00 mov eax,0x0
4011a7: 48 8b 55 f8 mov rdx,QWORD PTR [rbp-0x8]
4011ab: 64 48 33 14 25 28 00 xor rdx,QWORD PTR fs:0x28
4011b2: 00 00
4011b4: 74 05 je 4011bb <vulfoo+0x45>
4011b6: e8 b5 fe ff ff call 401070 <__stack_chk_fail@plt>
4011bb: c9 leave
4011bc: c3 ret

or464

or4_cookie_64

| 30Overhead - Canary

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

| 31

| 32

https://elixir.bootlin.com/glibc/glibc-2.38/source/csu/libc-start.c#L288

| 33

Defense - 4:
Data Execution Prevention

(DEP, W⨁X, NX)

| 34Older CPUs
Older CPUs: Read permission on a page implies execution. So all readable
memory was executable.

AMD64 – introduced NX bit (No-eXecute in 2003)

Windows Supporting DEP from Windows XP SP2 (in 2004)

Linux Supporting NX since 2.6.8 (in 2004)

| 35

gcc parameter -z execstack to disable this protection

| 36

| 37What DEP cannot prevent

Can still corrupt stack or function pointers or critical data on the heap

As long as RET (saved EIP) points into legit code section, W⊕X protection will
not block control transfer

| 38

Defense - 5:
Address Space Layout Randomization

(ASLR)

| 39ASLR History

2001 - Linux PaX patch
2003 - OpenBSD
2005 - Linux 2.6.12 user-space
2007 - Windows Vista kernel and user-space
2011 - iOS 5 user-space
2011 - Android 4.0 ICS user-space
2012 - OS X 10.8 kernel-space
2012 - iOS 6 kernel-space
2014 - Linux 3.14 kernel-space

Not supported well in embedded devices.

| 40Address Space Layout Randomization (ASLR)
Attackers need to know which address to control (jump/overwrite)

● Stack - shellcode
● Library - system()

Defense: let’s randomize it!

● Attackers do not know where to jump...

| 41Position Independent Executable (PIE)

Position-independent code (PIC) or position-independent executable
(PIE) is a body of machine code that executes properly regardless of
its absolute address.

| 42Process Address Space in General

| 43Traditional Process Address Space - Static Program

Stack

heap

.bss

.data

.textFixed
location

| 44Traditional Process Address Space - Static Program w/shared Libs

Stack

heap

.bss and .data

.textFixed
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Fixed
location

Fixed
location

| 45ASLR Process Address Space - w/o PIE

Stack

heap

.bss and .data

.textFixed
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Random
location

Random
location

| 46ASLR Process Address Space - PIE

Stack

heap

.bss and .data

.textRandom
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Random
location

Random
location

| 47code/aslr1
int k = 50;
int l;
char *p = "hello world";

int add(int a, int b)
{

int i = 10;
i = a + b;
printf("The address of i is %p\n", &i);

return i;
}

int sub(int d, int c)
{

int j = 20;
j = d - c;
printf("The address of j is %p\n", &j);

return j;
}

int compute(int a, int b, int c)
{

return sub(add(a, b), c) * k;
}

int main(int argc, char *argv[])
{

printf("===== Libc function addresses =====\n");
printf("The address of printf is %p\n", printf);
printf("The address of memcpy is %p\n", memcpy);
printf("The distance between printf and memcpy is %x\n", (int)printf - (int)memcpy);
printf("The address of system is %p\n", system);
printf("The distance between printf and system is %x\n", (int)printf - (int)system);
printf("===== Module function addresses =====\n");
printf("The address of main is %p\n", main);
printf("The address of add is %p\n", add);
printf("The distance between main and add is %x\n", (int)main - (int)add);
printf("The address of sub is %p\n", sub);
printf("The distance between main and sub is %x\n", (int)main - (int)sub);
printf("The address of compute is %p\n", compute);
printf("The distance between main and compute is %x\n", (int)main - (int)compute);

printf("===== Global initialized variable addresses =====\n");
printf("The address of k is %p\n", &k);
printf("The address of p is %p\n", p);
printf("The distance between k and p is %x\n", (int)&k - (int)p);

printf("===== Global uninitialized variable addresses =====\n");
printf("The address of l is %p\n", &l);
printf("The distance between k and l is %x\n", (int)&k - (int)l);

printf("===== Local variable addresses =====\n");
return compute(9, 6, 4);

}

| 48Check the symbols

nm | sort

| 49PIE Overhead

● <1% in 64 bit
Access all strings via relative address from current rip
lea rdi, [rip+0x23423]

● ~3% in 32 bit
Cannot address using eip
Call __86.get_pc_thunk.xx functions

| 50Temporarily enable and disable ASLR

Disable:
echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Enable:
echo 2 | sudo tee /proc/sys/kernel/randomize_va_space

| 51ASLR Enabled; PIE; 32 bit

| 52ASLR Enabled; PIE; 64 bit

| 53Bypass ASLR

● Address leak: certain vulnerabilities allow attackers to obtain the addresses
required for an attack, which enables bypassing ASLR.

● Relative addressing: some vulnerabilities allow attackers to obtain access to
data relative to a particular address, thus bypassing ASLR.

● Implementation weaknesses: some vulnerabilities allow attackers to guess
addresses due to low entropy or faults in a particular ASLR implementation.

● Side channels of hardware operation: certain properties of processor
operation may allow bypassing ASLR.

| 54

NDSS 2016

| 55Reference
● https://zzm7000.github.io/teaching/2023fallcse410518/index.html

