CS 4910: Intro to Computer
Security

Software Security IV:
stack-based buffer overflow - defense

Instructor: Xi Tan

Review

e |dentify a buffer overflow in a program

e Exploit a buffer overflow vulnerability
O Overwrite local variables (data-only attack)
O Overwrite the return address (control-flow hijacking)

This class

e Stack-based buffer overflow defenses

Base and bound check

Shadow stack

Stack Canary/Cookie

Data execution prevention (DEP, NX, etc.)
ASLR

Attacker’s Goal

Take control of the victim’s machine
e Hijack the execution flow of a running program
e Execute arbitrary code

Requirements
® Inject attack code or attack parameters
® Abuse vulnerability and modify memory such that control flow is redirected

Change of control flow
® alter a code pointer (RET, function pointer, etc.)
e change memory region that should not be accessed

Overflow Types

Overflow some code pointer

e Overflow memory region on the stack
o overflow function return address
o overflow function frame (base) pointer
o overflow longjmp buffer

o

e Overflow function pointers
o stack,

Other pointers?

Can we exploit other pointers as well?

e Memory that is used in a value to influence mathematical operations, conditional
jumps.

e Memory that is used as a read pointer (or offset), allowing us to force the program
to access arbitrary memory.

e Memory that is used as a write pointer (or offset), allowing us to force the program
to overwrite arbitrary memory.

e Memory that is used as a code pointer (or offset), allowing us to redirect program
execution!

Typically, you use one or more vulnerabilities to achieve multiple of these effects.

Defenses

e Prevent buffer overflow
o Adirect defense
o Could be accurate but could be slow
o Good in theory, but not practical in real world

e Make exploit harder
o Anindirect defense
o Could be inaccurate but could be fast
o Simple in theory, widely deployed in real world

Examples

e Base and bound check
o Prevent buffer overflow!
o Adirect defense

e Stack Canary/Cookie
o An indirect defense
o Prevent overwriting return address

e Data execution prevention (DEP, NX, etc.)
o Anindirect defense
o Prevent using of shellcode on stack

Defense-1;
Base and bound check

Spatial Memory Safety — Base and Bound check "
char *a

e char *a_base;

e char *a_bound;

a = (char*)malloc(512)
* 3_base = g;
* a_bound =a+512

Access must be between [a_base, a_bound)
e a[0], a[1], a[2], ..., and a[511] are OK

e a[512] NOT OK

e a[-1] NOT OK

Spatial Memory Safety — Base and Bound check

Propagation

e char *b = a;
e b _base =a_base;
e b_bound =a_bound;

e char *c = &b[2];
e c_base =b_base;
e ¢_bound =b_bound;

| 11

| 12

Overhead - Based and Bound

+2x overhead on storing a pointer
e char *a

e char *a_base;

e char *a_bound;

+2x overhead on assignment
e char *b = a;

e b _base =a_base;

e b _bound =a_bound;

+2 comparisons added on access
e c[i]

e if(c+i >= c_base)

e if(c+i < c_bound)

| 13

SoftBound: Highly Compatible and Complete
Spatial Memory Safety for C

Santosh Nagarakatte Jianzhou Zhao Milo M. K. Martin ~ Steve Zdancewic

Computer and Information Sciences Department, University of Pennsylvania
santoshn@cis.upenn.edu jianzhou®cis.upenn.edu milom@cis.upenn.edu stevez@cis.upenn.edu

Abstract dress on the stack, address space randomization, non-executable
stack), vulnerabilities persist. For one example, in November 2008
Adobe released a security update that fixed several serious buffer
overflows [2]. Attackers have reportedly exploited these buffer-

Avarflan: vmlnarahilitiac ho noina hannar ade Aan wiahoitac ta rads

The serious bugs and security vulnerabilities facilitated by C/C++’s
lack of bounds checking are well known, yet C and C++ remain
in widespread use. Unfortunately, C’s arbitrary pointer arithmetic,

PLDI 09

HardBound: Architectural Support for
Spatial Safety of the C Programming Language

Colin Blundell

University of Pennsylvania
blundell@cis.upenn.edu

Joe Devietti *

University of Washington
devietti@cs.washington.edu

Abstract

The C programming language is at least as well known for its ab-
sence of spatial memory safety guarantees (i.e., lack of bounds
checking) as it is for its high performance. C’s unchecked pointer
arithmetic and array indexing allow simple programming mistakes
to lead to erroneous executions, silent data corruption, and security
vulnerabilities. Many prior proposals have tackled enforcing spatial
safety in C programs by checking pointer and array accesses. How-
ever, existing software-only proposals have significant drawbacks
that may prevent wide adoption, including: unacceptably high run-
time overheads, lack of completeness, incompatible pointer repre-
sentations, or need for non-trivial changes to existing C source code

and ~ramnilar infractrmintuira

Milo M. K. Martin

University of Pennsylvania
milom@cis.upenn.edu

(A)

ASPLOS 09

Steve Zdancewic

University of Pennsylvania
stevez@cis.upenn.edu

Arbitrary Bounded Pointer

~

s,metadata shadow space
| pointer | | base | bound |

-
-
-
-
-
-

Defense-2:
Shadow Stack

Traditional shadow stack
%Qgs:108

OxBEEF0048

/" First caller's EBP

‘Return address, RO .~

‘Return address, R1 -]

Return address, R2 -
—» Return address, R3 -.

Shadow Stack

Main stack
0x8000000

- Parameters for R1 |
‘Return address, RO -------- Return address, RO

Parameters for R2 |

.~ Return address, R1 -------- Return address, R1

EBP value for R1 |
Local variables

Parameters for R3

- Return address, R2 -------- Return address, R2

- EBP value for R2
Local variables

'Return address, R3 | -------- Return address, R3

EBP value for R3
Local variables

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

| 16

Parallel shadow stack
0x9000000

SUB
MOV
MOV
MOV

Figure

MOV
ADD
MOV
MOV
RET

Figure 3:

Traditional Shadow Stack

$4, %gs:108 # Decrement SSP
%$g9s:108, %$eax # Copy SSP into EAX

(%esp), %ecx # Copy ret. address into
$ecx, (%eax) # shadow stack via ECX
2: Prologue for traditional shadow stack.

%$g9s:108, %$ecx # Copy SSP into ECX
$4, %gs:108 # Increment SSP

(%ecx), %edx # Copy ret. address from
%$edx, (%esp) # shadow stack via EDX
Epilogue for traditional shadow stack

(overwriting).

| 17

| 18

Traditional Shadow Stack

MOV %gs:108, %ecx
ADD $4, %gs:108
MOV (%ecx), %edx
CMP %edx, (%esp) # Instead of overwriting,
JNZ abort # we compare
RET
abort:
HLT

Figure 4: Epilogue for traditional shadow stack
(checking).

| 19

Overhead - Traditional Shadow Stack

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

Traditional shadow stack
%Qgs:108

Shadow Stack

Main stack
0x8000000

| 20

OxBEEF0048

‘Return address, RO .~

Return address, R1 -)

Return address, R2 -
—» Return address, R3 -.

- Parameters for R1 |
~Return address, RO| --------
. First caller's EBP
. Parameters for R2
~ . Return address, R1 -------
" EBP value for R1 |

Local variables

Parameters for R3 |
- Return address, R2 ------
EBP value for R2

Local variables

. 'Return address, R3 | -—---|---

EBP value for R3
Local variables

Parallel shadow stack
0x9000000

Return address, RO

Return address, R1

Return address, R2

Return address, R3

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

Parallel Shadow Stack

POP 999996 (%esp) # Copy ret addr to shadow stack
SUB $4, %$esp # Fix up stack pointer (undo POP)

Figure 7: Prologue for parallel shadow stack.

ADD $4, %esp # Fix up stack pointer
PUSH 999996 (%esp) # Copy from shadow stack

Figure 8: Epilogue for parallel shadow stack.

| 21

| 22

Overhead Comparison

The overhead is roughly 10% for a traditional shadow stack.

The parallel shadow stack overhead is 3.5%.

Defense-3:
Stack Cookie; Stack Canary

specific to sequential stack overflow

| 24

JANUARY 26-29, 1998 « SAN ANTONIO, TX, USA

USENIX

StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks

Abstract:

This paper presents a systematic solution to the persistent problem of buffer overflow attacks. Buffer overflow attacks
gained notoriety in 1988 as part of the Morris Worm incident on the Internet. While it is fairly simple to fix individual buffer
overflow vulnerabilities, buffer overflow attacks continue to this day. Hundreds of attacks have been discovered, and
while most of the obvious vulnerabilities have now been patched, more sophisticated buffer overflow attacks continue to
emerge.

We describe StackGuard: a simple compiler technique that virtually eliminates buffer overflow vulnerabilities with only
modest performance penalties. Privileged programs that are recompiled with the StackGuard compiler extension no
longer yield control to the attacker, but rather enter a fail-safe state. These programs require no source code changes at
all, and are binary-compatible with existing operating systems and libraries. We describe the compiler technique (a
simple patch to gcc), as well as a set of variations on the technique that trade-off between penetration resistance and
performance. We present experimental results of both the penetration resistance and the performance impact of this
technique.

| 25

StackGuard

A compiler technique that attempts to eliminate buffer overflow vulnerabilities

e No source code changes
e Patch for the function prologue and epilogue
o Prologue: push an additional value into the stack (canary)
o Epilogue: check the canary value hasn’t changed. If changed, exit.

| 26

Buffer Overflow Example: overflowret4

int vulfoo()

{
char buf[30];

gets(buf);
return O;

}

int main(int argc, char *argv[])
{

vulfoo();

printf("I pity the fooll\n");
}

With and without Canary 32bit

| 27

or4

000011ed <vulfoo>:
11ed: f30f1efb endbr32
11f1: 55 push ebp
11f2: 89e5 mov ebp,esp
11f4: 83 ec38 sub esp,0x38
11f7: 83 ecOc sub esp,0xc
11fa: 8d 45 d0 lea eax,[ebp-0x30]
11fd: 50 push eax
11fe: e8 fc ff ff ff call 11ff <vulfoo+0x12>
1203: 83c410 add esp,0x10
1206: b8 00 00 00 00 mov eax,0x0
120b: 9 leave
120c: c3 ret

or4 _cookie
0000120d <vulfoo>:
120d: f30f1efb endbr32
1211: 55 push ebp
1212: 89e5 mov ebp,esp
1214: 53 push ebx
1215: 83 ec34 sub esp,0x34

1218: €8 81 00 00 00 call 129e <_ x86.get_pc_thunk.ax>
121d: 05 b3 2d 00 00 add eax,0x2db3

1222: 658b0d 14000000 mov ecx,DWORD PTR gs:0x14

1229: 89 4d f4 mov DWORD PTR [ebp-0xc],ecx
122c: 31¢9 Xor ecx,ecx

122e: 83 ec Oc sub esp,0xc

1231: 8d 55 cc lea edx,[ebp-0x34]

1234: 52 push edx

1235: 89 c3 mov ebx,eax

1237: e854fe ffff call 1090 <gets@plt>

123c: 83c410 add esp,0x10

123f: b8 00 00 00 00 mov eax,0x0

1244 8b 4d f4 mov ecx,DWORD PTR [ebp-0xc]
1247: 65330d 14000000 xor ecx,DWORD PTR gs:0x14
124e: 74 05 je 1255 <vulfoo+0x48>

1250: e8 db 00 00 00 call 1330 <_stack chk fail local>
1255: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
1258: 9 leave

1259: c3 ret

| 28

With and without Canary

or4d or4_cookie

ebp
—

ebp - Oxc
0x30 —_—

0x28 = 401

0x34

With and without Canary 64bit

ord cookie 64

| 29

0000000000401176 <vulfoo>:

401176: f30f1efa endbr64
40117a: 55 push rbp
40117b: 4889 e5 mov rbp,rsp
40117e: 48 83 ec 30 sub rsp,0x30

or464

0000000000001169 <vulfoo>:

1169: f3 0f 1e fa endbr64

116d: 55 push rbp

116e: 48 89e5 mov rbp,rsp

1171: 4883 ec30 sub rsp,0x30

1175: 48 8d 45 d0 lea rax,[rbp-0x30]

1179: 48 89 c7 mov rdi,rax

117c: b8 00 00 00 00 mov eax,0x0

1181: e8eafeffff call 1070 <gets@plt>

1186: b8 00 00 00 00 mov eax,0x0

118b: 9 leave

118c: 3 ret

401182: 6448 8b 04252800 mov rax,QWORD PTR fs:0x28
401189: 0000

40118b: 48 89 45 8 mov QWORD PTR [rbp-0x8],rax
40118f: 31 ¢c0 XOr eax,eax

401191: 48 8d 45 d0 lea rax,[rbp-0x30]

401195: 48 89 c7 mov rdi,rax

401198: b8 00 00 00 00 mov eax,0x0
40119d: e8 de fe ff ff call 401080 <gets@plt>
4011a2- h8 00000000 mov__eax 0x0

4011a7: 48 8b 55f8 mov rdx,QWORD PTR [rbp-0x8]
4011ab: 64 483314252800 xor rdx,QWORD PTR fs:0x28
4011b2: 0000

4011b4: 7405 je 4011bb <vulfoo+0x45>

4011b6: e8 b5 fe ff ff call 401070 < stack chk fail@plt>

4011bb: c9 leave
4011bc: 3 ret

| 30

Overhead - Canary

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

App 2 [<—

Stack canary
value generation

................ IS

:Microcontroller systems
| Task 2 j«—

=
w
W
[E—
A

— Runtime checking

R S |

“int func()

Prologue

. instrumentation;

char buf[6];

return 9;

: Epilogue 1
: linstrumentationlg

~

| 21

B App 1 memory
[JApp 2 memory
[C]Kernel memory
[C]Global memory
-~ Privilege Isolation

= Mismatch handling =2

.............. S

.__stack_chk_fail()

STATIC int
LIBC_START_MAIN (int (*main) (int, char **, char ** MAIN_AUXVEC_DECL),
int arge, char **argv,
#ifdef LIBC_START_MAIN_AUXVEC_ARG
ELfW(auxv_t) *auxvec,
#endif
__typeof (main) init,
void (*fini) (void),
void (*rtld_fini) (void), void *stack_end)

{
#ifndef SHARED
char **ev = &Zargv[argc + 1];

__environ = ev;

/* Store the lowest stack address. This is done in ld.so if this is
the code for the DSO. */
__libc_stack_end = stack_end;

ifdef HAVE_AUX_VECTOR
/* First process the auxiliary vector since we need to find the
program header to locate an eventually present PT_TLS entry. */
ifndef LIBC_START_MAIN_AUXVEC_ARG
ElfW(auxv_t) *auxvec;
{
char **evp = ev;
while (*evp++ != NULL)

auxvec = (ElfW(auxv_t) *) evp;
}
endif
_dl_aux_init (auxvec);
endif

__tunables_init (__environ);
ARCH_INIT_CPU_FEATURES ();

/* Do static pie self relocation after tunables and cpu features
are setup for ifunc resolvers. Before this point relocations
must be avoided. */

_dl_relocate_static_pie ();

/* Perform IREL{,A} relocations. */
ARCH_SETUP_IREL ();

/* The stack guard goes into the T(CB, so initialize it early. */
ARCH_SETUP_TLS ();

/* In some architectures, IREL{,A} relocations happen after TLS setup in
order to let IFUNC resolvers benefit from TCB information, e.g. powerpc's
hwecap and platform fields available in the TCB. */

ARCH_APPLY_IREL ();

/* Set up the stack checker's canary. */
uintptr_t stack_chk_guard = _d1_setup_stack_chk_guard (_dl_random);

https://elixir.bootlin.com/glibc/glibc-2.38/source/csu/libc-start.c#L288 iR st A

else

*

Defense - 4:
Data Execution Prevention
(DEP, WX, NX)

| 34

Older CPUs

Older CPUs: Read permission on a page implies execution. So all readable
memory was executable.

AMDG64 — introduced NX bit (No-eXecute in 2003)
Windows Supporting DEP from Windows XP SP2 (in 2004)

Linux Supporting NX since 2.6.8 (in 2004)

| 35

gcc parameter -z execstack to disable this protection

-

-

security gcc of6.c -0 of6

security readelf -1 of6

ELf file type is DYN (Position-Independent Executable file)
Entry point 0x1040
There are 13 program headers, starting at offset 64

Program Headers:

Type
PHDR

INTERP

Offset

FileSiz
0x00000EEEEEEEEEUE
0x00EEEEEEEEEEO2d8
0x00EEEEEEEEEEE318
0x00EEEEEEEEEEEA1C

VirtAddr PhysAddr

MemSiz Flags Align
0x0000000000000040 0x0000EEEOOEEEOOUO
0x00000000000002d8 R 0x8
0x0000000000000318 0x000OEEEOOEEEO318
0x000000000000001c R 0x1

[Requesting program interpreter: /1ib6u4/1d-1inux-x86-6U.s0.2]

LOAD

LOAD

LOAD

LOAD

DYNAMIC

NOTE

NOTE
GNU_PROPERTY
GNU_EH_FRAME
GNU_STACK

GNU_RELRO

0x0000000000000000
0x00000000000005F0
0x0000000000001000
0x0000000000000145
0x00EEE00EEEE2000
opclcfelelololeleleloelelelololt)
0x00EEE0OOEE2dF0
0x00EEEE0OEEEE0220
0x000EEE0OEEE02e00
opc]elelelolelolelelefeleloN KelC)
0x000EE00OOEEEO338
0x0000000000000030
0x0000000OEEEO368
0x0000000000000044
0x0000000000000338
0x0000000000000030
0x0000000000002004
0x000000000000002¢
0x0000000000000000
0x0000000000000000
(°20101010101C1010101C1010 P e b 0]
0x0000000000000210

0x0000000000000000 OXEOOEOEEEEEEOOEEO
0x00000000000005F0 R 0x1000
0x0000EONNLER1000 OXPEOEEEEEEAA1EEO
0x0000000000000145 R E 0x1000
0x000EEE0EEE2000 OXEEOEEOEEEEO2000
0x00000000000000cd R 0x1000
0x0000000000003d+F0 OX0EOEOOEEEEO3dFO
0x0000000000000228 RW 0x1000
0x0000000000003e00 OXOOOEOOEEOOOO3e0O
0x00000000000001cO® RW 0x8
0x0000000000EEA338 OXOEOEOEEEEEOOO338
0x0000000000000030 R 0x8
0x00000000OOEEE368 OXEEOEOOEEOOOOO368
0x0000000000000044 R oxy
0x0000000000EEA338 OXOEOEOEEEEOOO338
0x0000000000000030 R 0x8
0x0000000000002004 OXEOOEOOEEEEO2004
0x000000000000002c R oxy
0x0000000000000000 OXEEOEOEEOEEEOOEO
0x0000000000000000 RW 0x10
UXPPULLLLELLLE3A+E UXPUUELLLLRLLLL3A+
0x0000000000000210 R 0x1

-

security gcc -z execstack -o of6_exe of6.c

security readelf -1 of6 exe

ELf file type is DYN (Position-Independent Executable file)
Entry point 0x1040
There are 13 program headers, starting at offset 64

Program Headers:

Type
PHDR

INTERP

Offset

FileSiz
0x0PEEEEEEEEPPLOUEO
0xPOOEEOROEEROO2d8
0x00EEEEEEEEEEO318
0x00EEEEEEEEEEEO1c

VirtAddr PhysAddr

MemSiz Flags Align
0x0000000000000040 0x00OEEEEEEOEEOOLO
0x0000E000EEE02d8 R 0x8
0x0000000000000318 0x0OEEEEEEEEO318
0x000000000000001c R 0x1

[Requesting program interpreter: /1ib64/ld-linux-x86-64.s0.2]

LOAD

LOAD

LOAD

LOAD

DYNAMIC

NOTE

NOTE
GNU_PROPERTY
GNU_EH_FRAME
GNU_STACK

GNU_RELRO

0x0000000000000000
0x00000000000005+0
0x0000000000001000
opclclolelelelolololclolo]oN REES
0x000EEE00OEE2000
opelelefelelelelololelefefee Ty
0x0000000000002d+0
0x0000000000000220
0x0000000000002e00
0x00EEEE0EEEE1cO
0x00EEEEOOEEE338
opelclelelelelololeleleleleleke]c)
0x00000000OOEO368
0x0000000000000044
0x0000000000000338
0x00EEEEOEEEE30
0x0000EE0E02004
0x0000EE0EEEE02C
0x0000000000000000
0x0000000000000000
0x0000000000002d+0
0x00EEEEOEEEE210

0x0000000000000000 OxOEEEEEEEOEEEEEOO
0x00000000000005Ff0 R 0x1000
0x000PEEEONEE1EE0 OXOEPEEEEALEEE1000
0x0000000000000145 R E 0x1000
0x0000000000002000 OXOEEEEEEEOEEE2000
0x00000000000000cd R 0x1000
0x0000000000003df0 OxOEEEEEEEOOEO3d+O
0x0000000000000228 RW 0x1000
0x0000EEE0OEE3e00 OXOEEEOOOOOOEO3e0O
0x00000000000001cO RW 0x8
0x0000000000000338 OxOEEEEEOOEEEO338
0x0000000000000030 R 0x8
0x0000000000000368 OxOEEEEEOOOOEEO368
0x0000000000000044 R oxy
0x0000PEOONNPEA338 OxPEEEOOOEEEEO338
0x0000000000000030 R 0x8
0x0000000000002004 OxOEEEEEOEOEEE2004
0x000000000000002c R oxy
0x0000000000000000 OxOEEEEEEEOOEEEEO
0x0000000000000000 RWE 0x10
0x0000000000003df0 OxOEEEEEEOOOEO3d+O
0x0000000000000210 R Ox1

| 37

What DEP cannot prevent

Can still corrupt stack or function pointers or critical data on the heap

As long as RET (saved EIP) points into legit code section, WX protection will
not block control transfer

Defense - 5:
Address Space Layout Randomization
(ASLR)

ASLR History

2001 - Linux PaX patch

2003 - OpenBSD

2005 - Linux 2.6.12 user-space

2007 - Windows Vista kernel and user-space
2011 - iOS 5 user-space

2011 - Android 4.0 ICS user-space

2012 - OS X 10.8 kernel-space

2012 - iOS 6 kernel-space

2014 - Linux 3.14 kernel-space

Not supported well in embedded devices.

| 39

Address Space Layout Randomization (ASLR) -

Attackers need to know which address to control (jump/overwrite)

e Stack - shellcode
e Library - system()

Defense: let’s randomize it!

e Attackers do not know where to jump...

| 41

Position Independent Executable (PIE)

Position-independent code (PIC) or position-independent executable
(PIE) is a body of machine code that executes properly regardless of
its absolute address.

Process Address Space in General

| 42

3GB .<

Random stack offset

} Random mmap offset

program break
brk

start_brk
Random brk offset

end_data

start_data

| 43

Traditional Process Address Space - Static Program

heap

Fixed
location ——

| 44

Traditional Process Address Space - Static Program w/shared Libs

Fixed libc.so
location —
Runtime linker: Id.so
Fixed
location —
heap
Fixed User code and data

location

Random
location

Random
location

Fixed
location

ASLR Process Address Space - w/o PIE

heap

libc.so

Runtime linker: Id.so

User code and data

| 45

Random
location

Random
location

Random
location

ASLR Process Address Space - PIE

heap

libc.so

Runtime linker: Id.so

User code and data

| 46

code/asirl

| 47

int k=50;
intl;
char *p ="hello world";

int add(int a, int b)
{
inti=10;
i=a+b;
printf("The address of i is %p\n", &i);

return i;

}

int sub(int d, int c)
{
int j = 20;
j=d-g
printf("The address of j is %p\n", &j);

return j;

}

int compute(int a, int b, int c)
{

return sub(add(a, b), c) * k;
}

int main(int argc, char *argv[])

{

printf("===== Libc function addresses =====\n");
printf("The address of printf is %p\n", printf);
printf("The address of memcpy is %p\n", memcpy);

printf("The distance between printf and memcpy is %x\n", (int)printf - (int)memcpy);
printf("The address of system is %p\n", system);

printf("The distance between printf and system is %x\n", (int)printf - (int)system);
printf("===== Module function addresses =====\n");

printf("The address of main is %p\n", main);

printf("The address of add is %p\n", add);

printf("The distance between main and add is %x\n", (int)main - (int)add);
printf("The address of sub is %p\n", sub);

printf("The distance between main and sub is %x\n", (int)main - (int)sub);
printf("The address of compute is %p\n", compute);

printf("The distance between main and compute is %x\n", (int)main - (int)compute);

printf("===== Global initialized variable addresses =====\n");
printf("The address of k is %p\n", &k);

printf("The address of p is %p\n", p);

printf("The distance between k and p is %x\n", (int)&k - (int)p);

printf("===== Global uninitialized variable addresses =====\n");
printf("The address of | is %p\n", &l);
printf("The distance between k and | is %x\n", (int)&k - (int));

printf("===== Local variable addresses =====\n");
return compute(9, 6, 4);

nm | sort

00003ec8
00003ecc
00003ecc
00003ed®
00003fc8
00004000

Check the symbols

_init

_start
__x86.get_pc_thunk.bx
deregister_tm_clones
register_tm_clones
__do_global_dtors_aux
frame_dummy
__x86.get_pc_thunk.dx
add

sub

compute

main
__x86.get_pc_thunk.ax
__libc_csu_init
__libc_csu_fini
__x86.get_pc_thunk.bp
__stack_chk_fail_local
_fini

_fp_hw

_I0_stdin_used
__GNU_EH_FRAME_HDR
__FRAME_END__
__frame_dummy_1init_array_entry
__init_array_start
__do_global_dtors_aux_fini_array_en
__init_array_end
_DYNAMIC
_GLOBAL_OFFSET_TABLE_
__data_start
data_start
__dso_handle

k

p

__bss_start
completed.7621
_edata
__TMC_END__

_end
__libc_start_main@@GLIBC_2.0
memcpy@@GLIBC_2.0
printf@EGLIBC_2.0
puts@@GLIBC_2.0
__stack_chk_fail@@GLIBC_2.4
system@@GLIBC_2.0
__cxa_finalize@@GLIBC_2.1.3
__gmon_start__
_ITM_deregisterTMCloneTable
ITM registerTM neTable

0000000000001000

_init

_start
deregister_tm_clones
register_tm_clones
__do_global_dtors_aux
frame_dummy

add

sub

compute

main

__libc_csu_1init
__libc_csu_finti

_fini

_I0_stdin_used
__GNU_EH_FRAME_HDR
__FRAME_END__
__frame_dummy_init_array_entry
__init_array_start

__do_global_dtors_aux_fini_array_entry

__init_array_end
_DYNAMIC
_GLOBAL_OFFSET_TABLE_
__data_start
data_start
__dso_handle

k

__bss_start
completed.8059
edata

__TMC_END__

_end
__libc_start_main@@GLIBC_2.2.5
memcpy@@GLIBC_2.14
printf@@GLIBC_2.2.5
puts@@GLIBC_2.2.5
__stack_chk_fail@@GLIBC_2.4
system@@GLIBC_2.2.5
__cxa_finalize@@GLIBC_2.2.5
__gmon_start__
_ITM_deregisterTMCloneTable
_ITM_registerTMCloneTable

PIE Overhead -

e <1%in 64 bit
Access all strings via relative address from current rip
lea rdi, [rip+0x23423]

e ~3%in 32 bit
Cannot address using eip
Call _ 86.get_pc_thunk.xx functions

| 50

Temporarily enable and disable ASLR

Disable:
echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Enable:
echo 2 | sudo tee /proc/sys/kernel/randomize_va_space

ASLR Enabled; PIE; 32 bit

./aslrl_32
Libc function addresses
address of printf is 0xf7d93520
address of memcpy is Oxf7eb4eal
distance between printf and memcpy is ffede680
address of system is 0xf7d83cd0
distance between printf and system is 850
Module function addresses =
address of main is 0x565al2ab
address of add is Ox565allad
distance between main and add is fe
address of sub is 0x565a120d
distance between main and sub is 9e
address of compute is 0x565al26b
distance between main and compute is 40
Global initialized variable addresses
address of k is Bx565a4008
address of p is 0x565a2008
distance between k and p is 2000
Global uninitialized variable addresses
address of 1 is 0x565a4014
distance between k and 1 is 565a4008
Local variable addresses
address of i is Oxffb77ff8
address of j is Oxffb77ff8
mn / s/ / box/ / ty$./aslrl_32
Libc function addresses
address of printf is 0xf7d16520
address of memcpy is Oxf7e37eal
distance between printf and memcpy is ffede680
address of system is Oxf7d06cd@
distance between printf and system is 850
Module function addresses
address of main is 0x565982ab
address of add is 0x565901ad
distance between main and add is fe
address of sub is 0x5659020d
distance between main and sub is 9e
address of compute is 0x5659026b
distance between main and compute is 40
Global initialized variable addresses
address of k is 0x56593008
address of p is 0x56591008
distance between k and p is 2000
Global uninitialized variable addresses
address of 1 is 0x56593014
distance between k and 1 is 56593008
Local variable addresses
address of i is Oxffe74db8
address of j is Oxffe74db8

ASLR Enabled; PIE; 64 bit

security$./aslrl_64

lec function addresses =====
address of printf is 0x7f23583b06f0
address of memcpy is 0x7f23584f09cO
distance between printf and memcpy is ffebfd30
address of system is 0x7f23583a0d70
distance between printf and system is 980
= Module function addresses
address of main is Ox55F613107282
address of add is 0x55f613107179
distance between main and add is 109
address of sub is 0x55f6131071e0
distance between main and sub is a2
address of compute is 0x55f613107245
distance between main and compute is 3d
= Global initialized variable addresses
address of k is 0x55f61310a010
address of p is 0x55f613108008
distance between k and p is 2008
= Global uninitialized variable addresses =
address of 1 is 0x55f61310a024
distance between k and 1 is 1310a010
Local variable addresses
address of i is 0x7ffcdée2lcl4
address of j is 0x7ffcd6e21014
/security$./aslrl_64
lec functlun addresses =
address of printf is Ox7ff7a51936f0
address of memcpy is 0x7ff7a52d39cO
distance between printf and memcpy is ffebfd30
address of system is 0x7ff7a5183d70
distance between printf and system is 980
= Module function addresses =
address of main is Gx5576eal3a282
address of add is 0x5576eal3al79
distance between main and add is 109
address of sub is 0x5576eal3alel
distance between main and sub is a2
address of compute is 0x5576eal3a245
distance between main and compute is 3d
Global initialized variable addresses
address of k is 0x5576eal3d010
address of p is 0x5576eal3b008
distance between k and p is 2008
= Global uninitialized variable addresses =
address of 1 is 0x5576eal3d024
distance between k and 1 is eal3d010
= Local variable addresses
address of i is Ox7ffeal9634c4
address of j is Ox7ffeal9634c4

| 53

Bypass ASLR

Address leak: certain vulnerabilities allow attackers to obtain the addresses
required for an attack, which enables bypassing ASLR.

Relative addressing: some vulnerabilities allow attackers to obtain access to
data relative to a particular address, thus bypassing ASLR.

Implementation weaknesses: some vulnerabilities allow attackers to guess
addresses due to low entropy or faults in a particular ASLR implementation.

Side channels of hardware operation: certain properties of processor
operation may allow bypassing ASLR.

How to Make ASLR Win the Clone Wars:
Runtime Re-Randomization

Kangjie Luf, Stefan Nﬁmbergerw, Michael Backes'Y, and Wenke Leef

TGeorgia Institute of Technology,

CISPA, Saarland University, SDFKI, IMPL-sWS

kjlu@gatech.edu, {nuernberger, backes} @cs.uni-saarland.de, wenke@cc.gatech.edu

Abstract—EXxisting techniques for memory randomization
such as the widely explored Address Space Layout Randomization
(ASLR) perform a single, per-process randomization that is
applied before or at the process’ load-time. The efficacy of such
upfront randomizations crucially relies on the assumption that
an attacker has only one chance to guess the randomized address,
and that this attack succeeds only with a very low probability.
Recent research results have shown that this assumption is not
valid in many scenarios, e.g., daemon servers fork child processes
that inherent the state — and if applicable: the randomization - of
their parents, and thereby create clones with the same memory
layout. This enables the so-called clone-probing attacks where an
adversary repeatedly probes different clones in order to increase
its knowledge about their shared memory layout.

In this paper, we propose RUNTIMEASLR - the first ap-

the exact memory location of these code snippets by means
of various forms of memory randomization. As a result, a
variety of different memory randomization techniques have been
proposed that strive to impede, or ideally to prevent, the precise
localization or prediction where specific code resides [29],
[22], [4], [8], [33], [49]. Address Space Layout Randomization
(ASLR) [44], [43] currently stands out as the most widely
adopted, efficient such kind of technique.

All existing techniques for memory randomization including
ASLR are conceptually designed to perform a single, once-
and-for-all randomization before or at the process’ load-time.
The efficacy of such upfront randomizations hence crucially
relies on the assumption that an attacker has only one chance

4n muvnnn tha anmdawiinad Addannn Af a smwnnnnn ta Taviaak attaal.

NDSS 2016

| 54

| 55

Reference

® https://zzm7000.github.io/teaching/2023fallcse410518/index.html

