
| 1

CS 4910: Intro to Computer
Security

Instructor: Xi Tan

Cryptographic Tools III

| 2

● Symmetric cryptography tools
○ Stream cipher
○ Block cipher
○ DES, AES
○ Block cipher modes

● Public Key Cryptography
○ RSA

What we already know

| 3

Today
Cryptographic tools

● Overview

● Symmetric Key Cryptography

● Public Key Cryptography
○ Diffie-Hellman Key Exchange

● Message Integrity and Digital
Signatures

● Summary

| 4

Key Distribution

● Encrypted communication channel between A and B
○ A selects a key and physically delivers it to B.

○ A trusted third party key distribution center (KDC) selects a key
and physically delivers it to A and B.

| 5

Diffie-Hellman Key Agreement Protocol
● Suggested ‘Public Key Cryptosystem’
● Presented ‘Diffie-Hellman key agreement protocol’

| 6

Diffie-Hellman Key Agreement Protocol
● The Diffie-Hellman key agreement protocol (1976) was the first

practical method for establishing a shared secret over an
unsecured communication channel.

● The point is to agree on a key that two parties can use for a
symmetric encryption, in such a way that an eavesdropper cannot
obtain the key.

● Also called ‘Diffie-Hellman key exchange protocol’

| 7

Whitfield Diffie and Martin Hellman

| 8

Applications
● Diffie-Hellman key agreement is currently used in many protocols,

namely:
○ Internet Protocol Security (IPSec)
○ Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
○ Public Key Infrastructure (PKI)

| 10

Diffie-Hellman Key Agreement Protocol
Steps
1. Alice and Bob agree on a prime number p and a base g. p and g can be

public
2. Alice chooses a secret number a, and sends Bob g^a mod p
3. Bob chooses a secret number b, and sends Alice g^b mod p
4. Alice computes (g^b mod p)^a mod p
5. Bob computes (g^a mod p)^b mod p
6. Both Alice and Bob can use this number as their key.

| 11

Diffie-Hellman Key Agreement Protocol

| 12

Example
Steps
1. Alice and Bob agree on p = 23 and g = 5.
2. Alice chooses a = 6 and sends 56 mod 23 = 8.
3. Bob chooses b = 15 and sends 515 mod 23 = 19.
4. Alice computes 196 mod 23 = 2.
5. Bob computes 815 mod 23 = 2.
6. Then 2 is the shared secret.

In reality, much larger values of a, b, and p are required. An eavesdropper
cannot discover this value even if she knows p and g and can obtain each of the
messages

| 13

Why it is secure?
● Suppose p is a prime of around 300 digits, and a and b at least 100 digits

each.
● Discovering the shared secret given p, g, ga mod q and gb mod q would take

longer than the lifetime of the universe, using the best known algorithm.
● This is called the discrete logarithm problem.

Fix a prime p. Let a, b be nonzero integers (mod p). The problem of finding x
such that ax = b (mod q) is called the discrete logarithm problem

| 14

Attacks on Diffie-Hellman
● In the real world, the Diffie-Hellman key exchange is rarely used by itself. The

main reason behind this is that it provides no authentication, which leaves
users vulnerable to man-in-the-middle attacks.

● A man-in-the-middle attack is a type of cyberattack where a malicious actor
inserts him/herself into a conversation between two parties, impersonates
both parties and gains access to information that the two parties were trying
to send to each other.

● A man-in-the-middle attack allows a malicious actor to intercept, send and
receive data meant for someone else, or not meant to be sent at all, without
either outside party knowing until it is too late.

| 15

MiM on Diffie-Hellman

| 17

Secure the Diffie-Hellman

● For this reason, the Diffie-Hellman key exchange is generally implemented
alongside some means of authentication. This often involves using digital
certificates and a public-key algorithm, such as RSA, to verify the identity of
each party.

| 18

Data Integrity and Hash Functions

| 19

Outline
● So far we discussed encryption as means to data confidentiality protection
● Next, we will talk about data integrity protection

○ this covers message authentication codes
○ we also discuss hash functions as a tool for integrity protection and other

applications

● Everything we are discussing so far assumes a computationally limited
adversary
○ doesn’t have unlimited resources, can’t search through the key space, etc.

| 20

Message (Data) Integrity
● Encryption protects data only from a passive attack

○ we often also want to protect message from active attacks (modification or
falsification of data)

○ such protection is called message or data authentication

● Goals of message authentication
○ a message is authentic if it came from its alleged source in its genuine form
○ message authentication allows verification of message authenticity

| 21

Message Authentication
● How can message authentication be performed?

○ in addition to the message itself, another token that authenticates the message,
often called a tag, is transmitted

○ the cryptographic primitive is called a Message Authentication Code (MAC)

● Message authentication is independent of encryption
○ it can be used with or without encryption
○ a number of applications benefit from message authentication alone

| 22

Message Authentication
● What do we want from a message authentication code?

○ a tag should be easy to compute by legitimate parties, but hard to forge by an
adversary

● MAC constructions use a secret key
○ a secret key is shared by two communicating parties
○ a MAC cannot be computed (or verified) without the key

● To achieve source authentication and message integrity:
○ the sender computes t = MACk(m) and sends (m, t)
○ the receiver recomputes t ′ = MACk(m) for received m and compares it to t

| 23

Message Authentication Code
● A MAC scheme is defined by three algorithms:

○ key generation: a randomized algorithm, which on input a security parameter n,
produces key a k

○ MAC generation: a possibly randomized algorithm, which on input a message m
and key k, produces a tag t

○ MAC verification: a deterministic algorithm, which on input a message m, tag t,
and key k, outputs a bit b

| 24

Message Authentication Code
● Properties of MAC algorithms

○ most fundamentally, we desire correctness and security
■ correctness requires that a correctly computed tag will always verify
■ security will be defined later and intuitively requires that it is hard to

forge a tag on a new message without the key

● from a performance point of view, we desire (and can achieve) tags of a fixed
size (i.e., independent of the message length)

| 25

Message Authentication Code
● Classification of attacks on MACs:

○ known-text attack: one or more pairs (mi , Mac (mi)) are available

○ chosen-text attack: one of more pairs (mi , Mac (mi)) are available for
mi’s chosen by the adversary

○ adaptive chosen-text attack: the mi’s are chosen by the adversary, where
successive choices can be based on the results of prior queries

● Against which kind of attack do we want to be resilient?

| 26

Message Authentication Code
● Classification of forgeries:

○ selective forgery: an adversary is able to produce a new MAC pair for a
message under her control

○ existential forgery: an adversary is able to produce a new MAC pair but
with no control of the value of the message

● Resilience against which type would be preferred?
● And, as usual, key recovery is the most damaging attack on MAC

| 27

Message Authentication Code
● We desire for a MAC to be existentially unforgeable under an adaptive chosen-

message attack
○ an adversary is allowed to query tags on messages of its choice
○ at some point it outputs a pair (m, t)
○ the forgery is considered successful if m hasn’t been queried before and t is a valid tag for it
○ as with encryption, security guarantees depend on the security parameter

● MACs do not prevent all traffic injections
○ a replayed message will pass verification process
○ it is left to the application to make each message unique

| 28

Message Authentication Code
● There are two most common (standardized) implementations of MAC functions

○ CBC-MAC: based on a symmetric encryption (e.g., AES) in Cipher Block Chaining
(CBC) mode with some modifications
■ varying IV is not permitted
■ only a single block is produced
■ additional security measures are in place to support variable-length messages

○ HMAC: based on a hash function

● We’ll discuss the second one and need to look at hash functions first

| 29

Message Authentication Code
● A CBC-MAC variant secure in the presence of variable-length messages

Original CBC mode:

| 30

Hash Functions

| 31

Hash Functions: one way
● Just a method of compressing strings

○ E.g., H: {0, 1}* à {0, 1}160

○ Inputs is called “message”, output is “digest, hash value”

H(m)
large

message
m

H: Hash
Function

Some pairs of inputs will be mapped to the same hash value. This is called collision

| 32

Hash Functions
● A hash function h is an efficiently-computable function that maps an input x of an

arbitrary length to a (short) fixed-length output h(x)
○ hash functions have many uses including hash tables

● We are interested in cryptographic hash functions that must satisfy certain security
properties
○ it is computationally hard to invert h(x)
○ it is computationally hard to find collisions in h

● Other uses of hash functions include
○ password hashing
○ in digital signatures
○ in intrusion detection and forensics

| 33

Hash Functions
● h must satisfy the following security properties:

○ Preimage resistance (one-way): given h(x), it is difficult to find x
○ Second preimage resistance (weak collision resistance): given x, it is difficult to find xʹ such

that xʹ x and h(xʹ) = h(x)
○ Collision resistance (strong collision resistance): it is difficult to find any x, xʹ such that xʹ x

and h(xʹ) = h(x)

● Additional properties normally present in cryptographic hash
functions:
○ input bits and output bits should not be correlated
○ it should be hard to find any two inputs x and xʹ such that h(x) and h(xʹ) differ only in a small

number of bits
○ given h(x), it should be difficult to recover any substring of the input

| 34

Attacks on Hash Functions
● Brute force search attack

○ success solely depends on the length of the hash n
○ difficulty of finding a preimage or a second preimage is 2n

○ difficulty of finding a collision with probability 0.5 is about 2n/2

■ this is due to so-called birthday attack that computes hashes of 2n/2

■ collision resistance is desired for a general-use hash function
● Cryptanalysis attacks are specific to hash function algorithms

| 35

Hash Functions: A Bad Example
H(x) = x mod 8, where x can be any integer

Input: Arbitrarily large integer

Output: {0, 1, 2, 3, 4, 5, 6, 7}, 3 bits

? Preimage resistant: Given a hash value h, it’s computationally infeasible to find an n that H(n) = h

Given h = 7, we know 7 or 7+8 or 7+16, ...

| 36

Hash Functions: A Bad Example
H(x) = x mod 8, where x can be any integer

Input: Arbitrarily large integer

Output: {0, 1, 2, 3, 4, 5, 6, 7}, 3 bits

? 2nd preimage resistant: Given m, it’s computationally infeasible to find m’ such that H(m’) = H(m)
and m’!=m

Given m = 57, we know 57-8 or 57+8 or 57+16, ...

| 37

Hash Functions: A Bad Example
H(x) = x mod 8, where x can be any integer

Input: Arbitrarily large integer

Output: {0, 1, 2, 3, 4, 5, 6, 7}, 3 bits

? Strong collision resistant: Computationally infeasible to find m1, m2 such that H(m1) = H(m2)

Any two integers that x = y +/- 8

| 38

Hash Functions
● Well known hash function algorithms:

○ MD5
○ SHA-1
○ SHA-2 family (SHA-256, SHA-384, and others)
○ new SHA-3

● Normally hash function algorithms are iterated
○ they use a compression function
○ the input is partitioned into blocks
○ a compression function is used on the current block mi and the previous output hi−1 to

compute:
hi = f(mi, hi-1)

| 39

Hash Function Algorithms
● Families of customized hash functions

○ MD2, MD4, MD5 (MD = message digest)
○ all have 128-bit output
○ MD4 and MD5 were specified as internet standards in RFC 1320 and 1321
○ MD5 was designed as a strengthened version of MD4 before weaknesses in MD4 were

found

○ collisions have been found for MD4 in 220 compression function computations (90s)
○ in 2004 collisions for many MD5 configurations were found
○ MD5 (and all preceding versions) are now too weak and should not to be used

| 40

Hash Function Algorithms
● Secure Hash Algorithm (SHA)

○ SHA was designed by NIST and published in FIPS 180 in 1993
○ In 1995 a revision, known as SHA-1, was specified in FIPS 180-1

■ it is also specified in RFC 3174

○ SHA-0 and SHA-1 have 160 bit output and MD4-based design
○ In 2002 NIST produced a revision of the standard in FIPS 180-2
○ SHA-2 hash functions have length 256, 384, and 512 to be compatible with the increased

security of AES
■ they are known as SHA-256, SHA-384, and SHA-512

○ Also, SHA-224 was added to compatibility with 3DES

| 41

Hash Function Algorithms
● Security of SHA

○ brute force attack is harder than in MD5 (160 bits vs. 128 bits)
○ SHA performs more complex transformations that MD5

■ it makes finding collisions more difficult
○ in 2004 collisions in SHA-0 were found in < 240

○ in 2005 collisions have been found in “reduced” SHA-1 (233 work)
○ finding collisions in the full version of SHA-1 is estimated at < 269
○ several other attacks followed and SHA-1 is considered too weak
○ SHA-2 is a viable option, but has the same structure as in SHA-1 (security weaknesses may

follow)

| 42

Hash Function Algorithms
● SHA-3

○ search for SHA-3 family was announced by NIST in 2007
■ it was required to support digests of 224, 256, 384, and 512 bits and messages of at least 264 − 1 bits

○ the winner, Keccak, was announced in 2012 and the SHA-3 standard was released in 2015 as
NIST’s FIPS 202

○ Keccak is a family of sponge functions
■ it is a mode of operation that builds a function mapping variable-length input to variable-length

output using a fixed-length permutation and a padding rule

■ SHA-3 can be used with one of seven Keccak permutations

■ the design is distinct from other widely used techniques

| 43

Application of Hash: Integrity Check
● Integrity: Prevent/detect/deter improper modification of information

| 44

Back to Message Authentication
● How do we construct a MAC from a hash function h and key k ?

○ consider defining Mack(m) = h(k||m)
■ knowledge of the key is required for efficient computation and verification
■ one-way property of h makes key recovery difficult

○ unfortunately, this construction is not as secure as we would like
■ iterative nature of hash function computation gives room for easy forgeries

● HMAC is a more complex construction with provable security

| 45

MAC Algorithms
● Hash-Based MAC – HMAC

● Goals:
○ use available hash functions without modifications
○ preserve the original performance of the hash function
○ use and handle keys in a simple way
○ allow replacement of the underlying hash function
○ have a well-understood cryptographic analysis of its strength

| 46

HMAC
● HMAC

○ HMACk(x) = h((K⊕ opad) || h((K⊕ ipad)||x))

○ K is the key k padded to a full block (≥ 512 depending on hash function)

○ ipad (inner padding) = 0x3636...36 and opad (oter padding) = 0x5C5C...5C are fixed padding
constants

● HMAC is efficient to compute

○ the entire message is hashed only once

○ the second time h is called on only two blocks

| 47

HMAC
● HMAC Security

○ security is related to that of the underlying hash function
■ we want k1 = h(K ⊕ opad) and k2 = h(K ⊕ ipad) to be rather independent and close to

random
■ then HMAC is existentially unforgeable under an adaptive chosen-message attack for

messages of any length

○ HMAC provides greater security than the security of the underlying hash function

○ no known practical attacks if a secure hash function is used according to the
specifications

| 48

Confidentiality + Integrity
● How do we use a MAC in combination with encryption?

| 49

Confidentiality + Integrity
● Analysis of prior constructions:

○ encrypt and authenticate
■ transmitting Mack2 (m) may leak information about m

○ authenticate then encrypt
■ has a chosen-ciphertext attack against the general version, which has been successfully

applied in practice

○ encrypt then authenticate
■ satisfies the definition of authenticated encryption and is CCA-secure

● The keys k1 and k2 must be different!

| 50

Authenticated Encryption
● Do I have to use encryption and MAC separately or are there authenticated

encryption modes?
○ recently, authenticated encryption modes have been proposed

● Some good reads:

○ https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-
authenticated-encryption/

○ https://stackoverflow.com/questions/1220751/how-to-choose-an-aes-
encryption-mode-cbc-ecb-ctr-ocb-cfb

https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-authenticated-encryption/
https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-authenticated-encryption/
https://stackoverflow.com/questions/1220751/how-to-choose-an-aes-encryption-mode-cbc-ecb-ctr-ocb-cfb
https://stackoverflow.com/questions/1220751/how-to-choose-an-aes-encryption-mode-cbc-ecb-ctr-ocb-cfb

| 51

Authenticated Encryption
● Good opmons to consider:

○ Offset Codebook (OCB) mode
■ state of the art in authenKcated encrypKon
■ proposed internet standard
■ has licensing restricKons
■ see hLp://web.cs.ucdavis.edu/ r̃ogaway/ocb/ocb-faq.htm for more informaKon

○ Galois/Counter Mode (GCM)
■ does not have licensing restricKons
■ can be used as an alternaKve for commercial soQware

| 52

So far we covered …
● Symmetric key encryption
● Public key cryptography
● Message authentication codes
● Hash functions (MD5, SHA-1, SHA-2, SHA-3)

● More to come: digital signature, pseudo-random number generators

