
| 1

CS 4910: Intro to Computer
Security

Instructor: Xi Tan

Cryptographic Tools IV

| 2

● Symmetric cryptography tools
○ Stream cipher
○ Block cipher
○ DES, AES
○ Block cipher modes

● Public Key Cryptography
○ RSA
○ Diffie-Hellman Key Exchange

● Message Integrity
○ MAC, Hash functions (MD5, SHA-1, SHA-2, SHA-3)

What we already know

| 3

Today
Cryptographic tools

● Overview

● Symmetric Key Cryptography

● Public Key Cryptography
○ Diffie-Hellman Key Exchange

● Message Integrity and Digital
Signatures

● Summary

| 4

Digital Signature

| 5

Digital Signatures

● A digital signature scheme is a method of signing messages stored in
electronic form and verifying signatures

● Digital signatures can be used in very similar ways conventional signatures
are used
○ paying by a credit card and signing the bill
○ signing a contract
○ signing a letter

● Unlike conventional signatures, we have that
○ digital signatures are not physically attached to messages
○ we cannot compare a digital signature to the original signature

| 6

Digital Signatures

● Digital signatures allows us to achieve the following security objectives:
○ authentication
○ integrity
○ non-repudiation

● Note that this is the main difference between signatures and MACs
○ a MAC cannot be associated with a unique sender since a symmetric

shared key is used

| 7

Digital Signatures

● It is meaningful to consider the following attack models
○ key-only attack
○ known message attack
○ chosen message attack

● Adversarial goals might be
○ total break
○ selective forgery
○ existential forgery

| 8

Digital Signatures

● A digital signature scheme consists of key generation, message signing, and
signature verification algorithms
○ key generation creates a public-private key pair (pk, sk)
○ signing algorithm takes a messages and uses private signing key to output a

signature
○ signature verification algorithm takes a message, a signature on it, and the

signer’s public key and outputs a yes/no answer

| 9

Digital Signatures

Simple digital signature for message m:
● Bob signs m by encrypting with his private key Ksk, creating “signed” message, Ksk(m)

Bob’s message,
m, signed (encrypted)
with his private key

Dear Alice

Oh, how I have missed you.

I think of you all the time! …

(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

Ksk Ksk(m)

| 10

Plain RSA Signatures

● Plain RSA signature is similar to plain RSA encryption

○ create a key pair as before: public pk = (e, n) and private sk = d

○ signing of message m using sk is done as σ = md mod n

○ verification of signature σ on message m using pk is performed as σe mod n ?= m

| 11

Digital Signatures

● Plain RSA is not a secure signature scheme
○ both existential and selective forgeries are easy
○ the “hash-and-sign” paradigm is used in many constructions to achieve adequate

security
■ e.g., compute h(m) and then continue with plain RSA signing of h(m)

○ this additionally improves efficiency
○ the hash function must satisfy all three security properties

■ preimage resistance
■ weak collision resistance

■ strong collision resistance

| 12

Digital Signatures

RSA signatures
● key generation

■ choose prime p and q, compute n = pq
■ choose prime e and compute d so that ed mod (p − 1)(q − 1) = 1
■ signing key is d, verification key is (e, n)

● message signing
○ given m, compute h(m)
○ output σ = h(m)d mod n

● signature verification
○ given m and σ, first compute h(m)
○ check whether σe mod n ?= h(m)

| 13

H(m)

large
message

m
H: Hash
function

digital
signature
(encrypt)

Bob’s
private

key Ksk

+

Bob sends digitally signed message: Alice verifies signature and integrity
of digitally signed message:

encrypted
msg digest
Ksk(H(m))

encrypted
msg digest
Ksk(H(m))

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key Kpk

equal
 ?

Digital signature = signed message digest

| 14

Digital Signatures (more)
● Suppose Alice receives msg m, digital signature Ksk(m)

● Alice verifies m signed by Bob by applying Bob’s public key Kpk to Ksk(m) then checks
Kpk(Ksk(m)) = m.

● If Kpk(Ksk(m)) = m, whoever signed m must have used Bob’s private key.

Alice thus verifies that:
ü Bob signed m.
ü No one else signed m.
ü Bob signed m and not m’.

Non-repudiation:
ü Alice can take m, and signature Ksk(m) to prove that Bob signed m.

| 15

Digital Signature Standard (DSS)
● Digital Signature Standard (DSS) or Digital Signature Algorithm (DSA) was

adopted as a standard in 1994
○ its design was influenced by prior ElGamal and Schnorr signature schemes
○ it assumes the difficulty of the discrete logarithm problem
○ no formal security proof exists

| 16

Digital Signature Standard (DSS)
● DSS was published in 1994 as FIPS PUB 186

○ it was specified to hash the message using SHA-1 before signing
○ it was specified to produce a 320-bit signature on a 160-bit hash

● The current version is FIPS PUB 186-4 (2013)
○ DSA can now be used with a 1024-, 2048-, or 3072-bit modulus
○ the message size is 320, 448, or 512 bits

● Signing and signature verification involve:
○ hashing the message
○ computing a couple of modulo exponentiations on both longer and shorter sizes

| 17

Digital Signature Standard (DSS)
● Thorough evaluation of security of a signature scheme is crucial

○ often a message can be encrypted and decrypted once and long-term security for
the key is not required

○ signatures can be used on legal documents and may need to be verified many
years after signing

○ choose the key length to be secure against future computing speeds

| 18

Bit Security
● All constructions studied so far rely on the fact that an adversary is limited in

computational power
○ if it has more resources than we anticipate, cryptographic algorithms can be

broken

● Today, 112–128-bit security is considered sufficient
○ this means approximately that for 128-bit security, 2128 operations are needed to

violate security with high probability

● This translates into the following parameters
○ symmetric key encryption: the key size is at least 112 bits
○ hash functions: the hash size is at least 224 bits
○ public key encryption: the modulus is at least 2048 bits long

| 19

Public key certificates

| 20

Public-key certificates
● As previously discussed, we want to use fast symmetric key cryptography for

secure communication
● When there is no pre-established relationship and shared key, public-key

cryptography is used to agree on the key
○ the idea is for one party A to choose a key k and send it encrypted to another

party B using B’s public key
■ A sends EncpkB(k) to B

○ this logic forms the basis of different protocols used in practice (e.g., TLS)

● The question of (public) key authenticity arises

| 21

Public Keys and Trust
● Motivation: Trudy plays pizza prank on Bob

○ Trudy creates e-mail order:
Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob

○ Trudy signs order with her private key
○ Trudy sends order to Pizza Store
○ Trudy sends to Pizza Store her public key, but says it’s Bob’s public key.
○ Pizza Store verifies signature; then delivers four pizzas to Bob.
○ Bob doesn’t even like Pepperoni

| 22

Public Keys and Trust

● If we want to use public-key cryptography, we are facing the key distribution
problem
○ how/where are public keys stored?
○ how do I obtain someone’s public key?
○ how can Bob know or “trust” that pkA is indeed Alice’s public key?

| 23

Public-key certificates
● Distribution of public keys can be done

○ by public announcement
■ a user distributes her key to recipients or broadcasts to community

○ through a publicly available directory
■ can obtain greater security by registering keys with a public directory

● Both approaches don’t protect against forgeries

● Digital certificates are used to address this problem
○ a certificate binds identity (and/or other information) to a public key

| 24

Certification Authorities
● Certification authority (CA): binds public key to particular entity, E.
● E (person, router) registers its public key with CA.

○ Bob provides “proof of identity” to CA.
○ CA creates certificate binding E to its public key.
○ certificate containing Bob’s public key digitally signed by CA – CA says “this is Bob’s public key”

Bob’s
public

key Kpk

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key
Ksk

K+
B

certificate for Bob’s
public key, signed by CA

| 25

Certification Authorities
● When Alice wants Bob’s public key:

○ gets Bob’s certificate (Bob or elsewhere).
○ apply CA’s public key to Bob’s certificate, get Bob’s public key

Bob’s
public

key Kpk

digital
signature
(decrypt)

CA
public

key
KCA

Ksk

| 26

Public-key certificates
● (Root of trust) Assume there is a trusted central authority CA with a

known public key pkCA
● CA produces certificate for Bob as certB = sigCA(pkB||Bob)
● Bob distributes (pkB, certB)
● Alice can verify that her copy of Bob’s key is genuine
● This technique is used in many applications

○ TLS/SSL, ssh, email, IPsec, etc.

| 27

| 28

Website Identity
● When you go to a site that uses HTTPS (connection security), the

website's server uses a certificate to prove the website's identity to
browsers, like Chrome.

● Anyone can create a certificate claiming to be whatever website they
want. To help you stay on safe on the web, a good browser requires
websites to use certificates from trusted organizations.

| 29

X.509 Identity Certificates
● Distinguished Name of user

○ C=US, O=Lawrence Berkely National Laboratory, OU=DSD, CN=Mary R.
Thompson

● DN of Issuer
○ C=US, O=Lawrence Berkely National Laboratory, CN=LBNL-CA

● Validity dates:
○ Not before <date>, Not after <date>

● User's public key
● Signed by CA

| 30

Certificate Authority
● A trusted third party - must be a secure server
● Signs and publishes X.509 Identity certificates
● Revokes certificates and publishes a Certification Revocation List (CRL)
● Many vendors

○ OpenSSL - open source, very simple
○ Netscape - free for limited number of certificates
○ Entrust - Can be run by enterprise or by Entrust
○ Verisign - Run by Verisign under contract to enterprise
○ RSA Security - Keon servers

| 31

Web Identity

| 32

Web Identity

| 33

Web Identity

| 34

Random Numbers

| 35

Random Numbers

● All cryptographic constructions that are non-deterministic or produce key
material require randomness
○ choosing symmetric key as a random string
○ choosing large prime and other numbers for public-key constructions
○ choosing padding or other means of randomizing encryption

● What do we expect from a random bit sequence?
○ uniform distribution: all possible values are equally likely
○ independence: no part of the sequence depends on its other parts

● Where do we find randomness?

| 36

Random Numbers
● Randomness can be gathered from physical, unpredictable processes

● Example sources of true randomness
○ least significant bits of time between key strokes
○ noise from a mouse, video camera, and microphone
○ variation in response times of raw read requests from a disk

● Amount of required randomness may not be small
○ example: choosing a 1024-bit prime

● Instead of a true random number generator (TRNG) we can use a pseudo-random
number generator (PRNG)

| 37

Pseudo-Random Numbers
● A pseudo-random generator is an algorithm that

○ takes a short value, called a seed, as its input
○ produces a long string that is statistically close to a uniformly chosen random

string
○ for a k-bit long seed, a PRG has period of at most 2k bits
○ formally, PRG : {0, 1}k → {0, 1}ℓ(k) for some ℓ(k) > k

● The security requirement is that a computationally bounded adversary
cannot tell the output of a PRG apart from a truly random string of the same
size
○ in practice, a number of statistical tests are used to test the strength of a PRG

| 38

Pseudo-Random Numbers
● PRGs are deterministic

○ the output is always the same on the same seed
○ for cryptographic purposes, it is crucial that the seed is hard to guess

■ i.e., use strong true randomness to generate a seed

● One of uses of a PRG is for symmetric key stream ciphers
○ two parties share a short key, which is used as a seed to a PRG
○ the resulting pseudo-random key string is used to encipher the data
○ portions of the pseudo-random string cannot be reused!

| 39

Pseudo-Random Numbers
● Example of a PRG

○ symmetric block ciphers, such as AES, can be used as PRGs
○ given a key k, produce a stream as Enck(0), Enck(1), . . ., where Enc is block cipher

encryption

● There are various tests that can be run on PRGs to determine how close the
output to a uniformly chosen string

● Of particular importance to cryptographically secure PRG is the next-bit test
○ given m bits of a PRG’s output, it is infeasible for any computationally-bounded

adversary to predict the m + 1th bit with probability non-negligibly greater than
1/2

| 40

Pseudo-Random Numbers
● Regardless of how randomness was produced, it is absolutely crucial that you

use good randomness
○ insufficient amount of randomness leads to predictable keys
○ this is especially dangerous for long-term signing keys

● Examples of poor randomness in cryptographic applications
○ CVE-2006-1833: Intel RNG Driver in NetBSD may always generate the same

random number, Apr. 2006
○ CVE-2007-2453: Random number feature in Linux kernel does not properly seed

pools when there is no entropy, Jun. 2007
○ CVE-2008-0166: OpenSSL on Debian-based operating systems uses a random

number generator that generates predictable numbers, Jan. 2008

| 41

Linux /dev/random and /dev/urandom
● Both /dev/random and /dev/urandom are devices to provide a cryptographically

secure pseudorandom number generator.
● /dev/random blocks when there is not enough entropy available, which can cause

performance issues in certain situations. Entropy refers to the amount of randomness
that can be gathered from the environment, such as user input and hardware events,
to generate secure random numbers.

● /dev/urandom does not block and will always generate random numbers using a
cryptographic algorithm that uses a cryptographic key to generate random numbers.
This means that /dev/urandom can generate random numbers much faster than
/dev/random. However, in some situations, if there is not enough entropy available,
/dev/urandom may use weaker sources of randomness, which can potentially reduce
the security of the generated random numbers.

| 42

Linux Random Number Generator 2.6.10
● The Linux random number generator is part of the kernel of all Linux

distributions and is based on generating randomness from entropy of
operating system events.

● The output of this generator is used for almost every security protocol,
including TLS/SSL key generation, choosing TCP sequence numbers, and file
system and email encryption.

| 43

Linux Random Number Generator 2.6.10

IEEE S&P 2006

| 44

Conclusion
● It is important to understand what security guarantees are expected from a

cryptographic tool
● It is important to use constructions that have been proven secure or are widely

believed to be secure
● The use of strong randomness is critical
● Implementing cryptographic constructions is hard!

○ bugs exist even in well-known and widely used cryptographic libraries
○ e.g., the Heartbleed Bug

| 45

Summary

| 46

Summary (1 of 2)

● Three types of cryptography: secret-key, public key, and hash function

plaintext ciphertext plaintext
KS KS

plaintext ciphertext plaintext
KA KB

plaintext ciphertext
hash function

A) Secret key (symmetric) cryptography. SKC uses a single key for both
encryption and decryption

B) Public key (asymmetric) cryptography. PKC uses two keys. One for
encryption and the other for decryption.

C) Hash function (one-way cryptography). The plaintext is not recoverable
from the ciphertext

| 47

Summary (2 of 2)

● Application of the three cryptographic techniques for secure communication

○ Confidentiality
■ Encrypted message

○ End-Point Authentication (Both Alice and Bob)
■ Secure Key exchange: only Bob can decrypt session key
■ Digital signature: decrypting the digital signature with Alice's public key

● Message was sent by Alice

○ Message Integrity
■ Hash value of her message

