CS 4910: Intro to Computer Security

Authentication

Instructor: Xi Tan

Updates

- Assignment 1 due 2/12
- Project 1 due 2/24

What we already know

- Cryptography tools
 - Symmetric and public-key encryption
 - Message integrity
 - MAC
 - Hash functions
 - Digital certificates and random numbers
- Next: intro to authentication

Outline

- Definition of entity authentication
- Solutions
 - Password-based authentication
 - Token-based authentication
 - Biometric-based authentication
 - Stronger forms of secure authentication

Authentication

- Message Authentication
 - Message Authentication Code (Keyed Hash) to confirm that the message came from the stated sender (its authenticity) and has not been changed in transit (its integrity).
- User/entity Authentication
 - Allow a user/computer to prove his/her/its identity to another entity (e.g., a system, a device).

- Authentication is a broad term and is normally referred to mechanisms of ensuring that
 - o entities are who they claim to be
 - o data has not been manipulated by unauthorized parties
- Entity authentication or identification refers to the means of verifying user identity
 - if such verification is successful, the user is granted appropriate privileges
- The need for user authentication in early computer systems arose once it became possible to support multi-user environments

- During an authentication protocol:
 - one party, the verifier, gathers evidence that the identity of another party, the claimant, is as claimed
- Goals of authentication protocols:
 - honest parties should be able to successfully finish the protocol with their identity accepted as authentic
 - it should be difficult for dishonest parties to impersonate an identity of another user
 - impersonation must remain difficult even after observing a large number of successful authentications by other parties
- User registration is required prior to an authentication protocol

- Identification mechanisms are often divided into 3 types based on how the identity evidence is gathered
 - O User knows a secret
 - Password, PIN, answers to prearranged questions
 - O User possesses a token
 - these are normally hardware tokens such as magnetic-striped cards or custom-designed devices for time-variant passwords
 - User has a physical attribute
 - characteristics inherent to the user such as biometrics, handwritten signatures, keystroke dynamics, facial and hand geometries, voice, etc.

User Knows a Secret

9

Cancel

Emergency

Cancel

0

Emergency call

User Possesses a Token

User Has a Physical Attribute (biometrics)

User Has a Physical Attribute (biometrics)

- Often, different types can be combined together
 - e.g., PIN-based authentication is often used with a physical device (user ID, credit card)
 - biometric-based authentication is often used in combination with a password or a physical token
- Many identification mechanisms used in practice are not secure
 - calling cards
 - o credit card purchases
 - o passwords
- Ideally, we want solutions against which replay attacks don't work

- A password is a string of (normally 8 or more) characters associated with a certain user
 - it serves the purpose of a shared secret between the user and the system
- During the identification protocol:
 - a user sends (userid, password) pair
 - userid identifies the user
 - password provides the necessary evidence that the user possesses the secret
 - the system compares that information with its has stored
 - o if the check succeeds, access is granted

- Storage of passwords
 - the most straightforward way of storing passwords is in clear text
 - there is a problem with such approach
 - to mitigate it, most systems apply a one-way hash function to a password and store the hash
 - the password itself cannot be recovered, but there are other concerns

- Attacks on passwords
 - replay of passwords: an attacker reuses a captured password
 - an attacker can capture a password by seeing a user type it, using a keylogger program or obtaining it in transit
 - rainbow table attacks: an attacker generates a table of hash values
 - pre-compute tables of hash values
 - a mammoth table of hash values
 - can be countered by using a sufficiently large salt value and a sufficiently large hash length

- Attacks on passwords (cont.)
 - exhaustive search: an attacker attempts to guess a user password by trying all possible strings
 - this can be done on the verifier itself or by obtaining a copy of the password file and performing the attack off-line
 - often the attack is infeasible if the password space is large enough
 - but it is still possible to exhaust all short passwords
 - dictionary attack: an attacker tries to guess a password using words from a dictionary and variations thereof
 - can have a high probability of success
 - dictionary attacks become increasingly sophisticated

- Is there a way to decrease the vulnerability of the system to such attacks?
- Additional measures are normally employed, some of which are:
 - o salting passwords
 - this technique makes guessing attacks less effective
 - a password is augmented with a random string, called salt, prior to hashing
 - the salt is stored in cleartext in the password file

uid₁, salt₁, h(salt₁||pwd₁)

uid₂, salt₂, h(salt₂||pwd₂)

• how does it improve security?

- Measures for improving security of passwords (cont.)
 - o slowing down password verification
 - the hash function for password verification is made more computationally extensive
 - this can be done, e.g., by iterating the computation n times
 - what is its drawback?
 - limiting the number of unsuccessful password guesses
 - a user account is locked after the number of successive unsuccessful authentication attempts exceeds the threshold
 - o employing password rules
 - additional rules on password choices are imposed
 - this often strengthens password choices but limits the search space

- Measures for improving security of passwords (cont.)
 - o preventing direct access to password file
 - the file/database with hashed passwords is kept inaccessible by ordinary users
- Another technique that aims at improving security of passwords is called password aging (enforce the regular changing of passwords)
- It is always a challenge to find a balance between memorability of passwords and their resistance to dictionary attacks
 - do users make acceptable password choices?
 - can we help them with choosing strong passwords?

- Password strength has been studied since 1990s
 - a significant portion of used passwords is guessable
 - passwords of short length can be cracked using brute force search
 - account-related or dictionary-derived passwords are common
 - password crackers today are increasingly complex
- How can we help users to select stronger passwords?
 - systems are much better at helping users than before
 - o a variety of tools exist

- User-chosen secrets
- Suppose passwords could be up to 9 characters long
- This would produce 10^18 possible passwords
- 320,000 years to try them all at 10 million a second!
- Unfortunately, not all passwords are equally likely to be used
- Users have the tendency to choose easy to remember but weak password

The Security of Modern Password Expiration: An Algorithmic Framework and Empirical Analysis

Yinqian Zhang University of North Carolina at Chapel Hill Chapel Hill, NC yinqian@cs.unc.edu Fabian Monrose University of North Carolina at Chapel Hill Chapel Hill, NC fabian@cs.unc.edu Michael K. Reiter University of North Carolina at Chapel Hill Chapel Hill, NC reiter@cs.unc.edu

- Tools for choosing stronger passwords
 - o computer-generated passwords
 - selecting less predictable passwords which users can remember can be done by using computer-generated pronounceable passwords
 - e.g.: heloberi, hoparmah, ulensoev, atonitim
 - o password checking
 - a proactive password checker rates password strength at the time of password selection
 - o Reactive password checking
 - System periodically runs its own password cracker to find guessable passwords
 - o other types of passwords
 - techniques for using images and graphical interfaces for authentication have been developed

- Tools for choosing stronger passwords (cont.)
 - o image-based passwords and graphical interfaces
 - displaying a sequence of images
 - drawing patterns on a grid
 - choosing points using an image
 - their unpredictability is often not as great as desired
- Unpredictability and usability of passwords is hard to achieve simultaneously
 - passwords can provide only a weak form of security

Best Password Practices

- NIST's Special Publication 800-63 provides authentication guidelines for organizations including password-based authentication
 the latest version is dated by June 2017
- In general, you want to
 - use strong passwords
 - not reuse passwords across different services
 - not share your passwords with anyone else
- Password managers are of great help in dealing with password explosion
 - o e.g., 1password

Remote Authentication

- Now assume we want to use passwords for remote authentication
 o will it work?
- Passwords observed on the network are trivially susceptible to replay
 - initially remote login and file transfer programs, such as telnet, communicated passwords in the clear
 - now encryption is used (ssh, scp, etc.)
- Authentication based on time-invariant passwords is therefore a weak form of authentication
 - this form of authentication is nevertheless the most common
- A natural way to improve security is to use one-time passwords

One-Time Passwords (OTP)

- In authentication based on one-time passwords each password is used only once
- Such authentication can be realized in the following ways:
 - the user and the system initially agree on a sequence of passwords
 - simple solution but requires maintenance of the shared list
 - the user updates her password with each instance of the authentication protocol
 - e.g., the user might send the new password encrypted under a key derived from the current password
 - this method crucially relies on the correct communication of the new password to the system
 - attack: fishing website/links

- An even stronger form of authentication is one where the user doesn't have to send the secret to the verifier
 - ideally you want to convince the verifier without leaking information about your secret
 - such solutions exist and often involve the verifier sending a random challenge to the claimant
 - the claimant uses the challenge and the secret to compute the response
 - anyone who monitors the channel, cannot deduce information about the secret

Challenge-Response Techniques

Challenge-Response Techniques

- The goal of challenge-response techniques is to
 - use a single secret for authentication
 - provide evidence of the secret without leaking information about it
 - proving possession of a secret without leaking information about it is called a zero-knowledge proof of knowledge
- Challenge-response protocols can be built
 - from simple cryptographic primitives (e.g, MACs and signature schemes)
 - o from scratch (Schnorr, Okamoto, and Guillou-Quisquater schemes)

Challenge-Response Techniques

- The basic form of such protocols is normally as follows:
 - suppose Alice is authenticating to Bob
 - Alice has a secret *s* and Bob has a verification value *v*
 - Bob sends to Alice a challenge *c* (chosen or computed anew)
 - Alice computes a response r = f(s, c) and sends it to Bob
 - Bob verifies *r* using *c* and *v*
- Building a secure challenge-response protocol is non-trivial
 - must be secure against active adversaries
 - parallel session attack
 - man-in-the-middle attack

Next

- Definition of entity authentication
- Solutions
 - o Password-based authentication
 - Token-based authentication
 - Biometric-based authentication
 - Stronger forms of secure authentication